Transport Property

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 38223 Experts worldwide ranked by ideXlab platform

Raman Sankar - One of the best experts on this subject based on the ideXlab platform.

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Suyang Xu, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Feiting Huang, Sunil K Karna, R Jayavel
    Abstract:

    Large single crystal growth, Transport Property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd 3 As 2

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Sunil K Karna, F T Huang, S T Guo, M W Chu, Weili Lee
    Abstract:

    The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Transport Property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

R Jayavel - One of the best experts on this subject based on the ideXlab platform.

Ilija Zeljkovic - One of the best experts on this subject based on the ideXlab platform.

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Suyang Xu, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Feiting Huang, Sunil K Karna, R Jayavel
    Abstract:

    Large single crystal growth, Transport Property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd 3 As 2

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Sunil K Karna, F T Huang, S T Guo, M W Chu, Weili Lee
    Abstract:

    The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Transport Property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

Panneer I Muthuselvam - One of the best experts on this subject based on the ideXlab platform.

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Suyang Xu, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Feiting Huang, Sunil K Karna, R Jayavel
    Abstract:

    Large single crystal growth, Transport Property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd 3 As 2

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Sunil K Karna, F T Huang, S T Guo, M W Chu, Weili Lee
    Abstract:

    The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Transport Property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.

Sunil K Karna - One of the best experts on this subject based on the ideXlab platform.

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Suyang Xu, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Feiting Huang, Sunil K Karna, R Jayavel
    Abstract:

    Large single crystal growth, Transport Property, and spectroscopic characterizations of three-dimensional Dirac semimetal Cd 3 As 2

  • large single crystal growth Transport Property and spectroscopic characterizations of three dimensional dirac semimetal cd3as2
    Scientific Reports, 2015
    Co-Authors: Raman Sankar, Madhab Neupane, Christopher John Butler, Ilija Zeljkovic, Panneer I Muthuselvam, Sunil K Karna, F T Huang, S T Guo, M W Chu, Weili Lee
    Abstract:

    The three dimensional (3D) Dirac semimetal is a new quantum state of matter that has attracted much attention recently in physics and material science. Here, we report on the growth of large plate-like single crystals of Cd3As2 in two major orientations by a self-selecting vapor growth (SSVG) method, and the optimum growth conditions have been experimentally determined. The crystalline imperfections and electrical properties of the crystals were examined with transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Transport Property measurements. This SSVG method makes it possible to control the as-grown crystal compositions with excess Cd or As leading to mobilities near 5-10(5) cm(2)V(-1)s(-1). Zn-doping can effectively reduce the carrier density to reach the maximum residual resistivity ratio (RRRρ300K/ρ5K) of 7.6. A vacuum-cleaved single crystal has been investigated using angle-resolved photoemission spectroscopy (ARPES) to reveal a single Dirac cone near the center of the surface Brillouin zone with a binding energy of approximately 200 meV.