TRPM2

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 11622 Experts worldwide ranked by ideXlab platform

Rhian M. Touyz - One of the best experts on this subject based on the ideXlab platform.

  • TRPM7, Magnesium, and Signaling.
    International journal of molecular sciences, 2019
    Co-Authors: Zhiguo Zou, Francisco J. Rios, Augusto C. Montezano, Rhian M. Touyz
    Abstract:

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.

  • dysregulation of renal transient receptor potential melastatin 6 7 but not paracellin 1 in aldosterone induced hypertension and kidney damage in a model of hereditary hypomagnesemia
    Journal of Hypertension, 2011
    Co-Authors: Alvaro Yogi, Andrzej Mazur, Glaucia E. Callera, Sarah E. O'connor, Rita C. Tostes, Ying He, Jose Correa, Rhian M. Touyz
    Abstract:

    RATIONALE: Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. OBJECTIVE: To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. METHODS AND RESULTS: Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 μg/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-κB and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. CONCLUSION: Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified.

  • transient receptor potential melastatin 7 trpm7 cation channels magnesium and the vascular system in hypertension
    Circulation, 2011
    Co-Authors: Alvaro Yogi, Glaucia E. Callera, Rita C. Tostes, Tayze T Antunes, Rhian M. Touyz
    Abstract:

    Decreased Mg(2+) concentration has been implicated in altered vascular reactivity, endothelial dysfunction and structural remodeling, processes important in vascular changes and target organ damage associated with hypertension. Unlike our knowledge of other major cations, mechanisms regulating cellular Mg(2+) handling are poorly understood. Until recently little was known about protein transporters controlling transmembrane Mg(2+) influx. However, new research has uncovered a number of genes and proteins identified as transmembrane Mg(2+) transporters, particularly transient receptor potential melastatin (TRPM) cation channels, TRPM6 and TRPM7. Whereas TRPM6 is found primarily in epithelial cells, TRPM7 is ubiquitously expressed. Vascular TRPM7 has been implicated as a signaling kinase involved in vascular smooth muscle cell growth, apoptosis, adhesion, contraction, cytoskeletal organization and migration, and is modulated by vasoactive agents, pressure, stretch and osmotic changes. Emerging evidence suggests that vascular TRPM7 function might be altered in hypertension. The present review discusses the importance of Mg(2+) in vascular biology in hypertension and focuses on transport systems, mainly TRPM7, that might play a role in the control of vascular Mg(2+) homeostasis. Elucidation of the relationship between the complex systems responsible for regulation of Mg(2+) homeostasis, the role of TRPM7 in vascular signaling, and the cardiovascular impact will be important for understanding the clinical implications of hypomagnesemia in cardiovascular disease.

  • Dysregulation of renal transient receptor potential melastatin 6/7 but not paracellin-1 in aldosterone-induced hypertension and kidney damage in a model of hereditary hypomagnesemia
    Journal of Hypertension, 2011
    Co-Authors: Alvaro Yogi, Glaucia E. Callera, Sarah E. O'connor, Jose W. Correa, Rita C. Tostes, André Mazur, Rhian M. Touyz
    Abstract:

    Rationale Hyperaldosteronism, important in hypertension, is associated with electrolyte alterations, including hypomagnesemia, through unknown mechanisms. Objective To test whether aldosterone influences renal Mg(2+) transporters, (transient receptor potential melastatin (TRPM) 6, TRPM7, paracellin-1) leading to hypomagnesemia, hypertension and target organ damage and whether in a background of magnesium deficiency, this is exaggerated. Methods and results Aldosterone effects in mice selectively bred for high-normal (MgH) or low (MgL) intracellular Mg(2+) were studied. Male MgH and MgL mice received aldosterone (350 mu g/kg per day, 3 weeks). SBP was elevated in MgL. Aldosterone increased blood pressure and albuminuria and increased urinary Mg(2+) concentration in MgH and MgL, with greater effects in MgL. Activity of renal TRPM6 and TRPM7 was lower in vehicle-treated MgL than MgH. Aldosterone increased activity of TRPM6 in MgH and inhibited activity in MgL. TRPM7 and paracellin-1 were unaffected by aldosterone. Aldosterone-induced albuminuria in MgL was associated with increased renal fibrosis, increased oxidative stress, activation of mitogen-activated protein kinases and nuclear factor-NF-kappa B and podocyte injury. Mg(2+) supplementation (0.75% Mg(2+)) in aldosterone-treated MgL normalized plasma Mg(2+), increased TRPM6 activity and ameliorated hypertension and renal injury. Hence, in a model of inherited hypomagnesemia, TRPM6 and TRPM7, but not paracellin-1, are downregulated. Aldosterone further decreased TRPM6 activity in hypomagnesemic mice, a phenomenon associated with hypertension and kidney damage. Such effects were prevented by Mg(2+) supplementation. Conclusion Amplified target organ damage in aldosterone-induced hypertension in hypomagnesemic conditions is associated with dysfunctional Mg(2+)-sensitive renal TRPM6 channels. Novel mechanisms for renal effects of aldosterone and insights into putative beneficial actions of Mg(2+), particularly in hyperaldosteronism, are identified. J Hypertens 29: 1400-1410 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

  • Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension
    American journal of physiology. Heart and circulatory physiology, 2008
    Co-Authors: Rhian M. Touyz
    Abstract:

    Magnesium, an essential intracellular cation, is critically involved in many biochemical reactions involved in the regulation of vascular tone and integrity. Decreased magnesium concentration has been implicated in altered vascular reactivity, endothelial dysfunction, vascular inflammation, and structural remodeling, processes important in vascular changes and target organ damage associated with hypertension. Until recently, very little was known about mechanisms regulating cellular magnesium homeostasis, and processes controlling transmembrane magnesium transport had been demonstrated only at the functional level. Two cation channels of the transient receptor potential melastatin (TRPM) cation channel family have now been identified as magnesium transporters, TRPM6 and TRPM7. These unique proteins, termed chanzymes because they possess a channel and a kinase domain, are differentially expressed, with TRPM6 being found primarily in epithelial cells and TRPM7 occurring ubiquitously. Vascular TRPM7 is modulated by vasoactive agents, pressure, stretch, and osmotic changes and may be a novel mechanotransducer. In addition to its magnesium transporter function, TRPM7 has been implicated as a signaling kinase involved in vascular smooth muscle cell growth, apoptosis, adhesion, contraction, cytoskeletal organization, and migration, important processes involved in vascular remodeling associated with hypertension and other vascular diseases. Emerging evidence suggests that vascular TRPM7 function may be altered in hypertension. This review discusses the importance of magnesium in vascular biology and implications in hypertension and highlights the transport systems, particularly TRPM6 and TRPM7, which may play a role in the control of vascular magnesium homeostasis. Since the recent identification and characterization of Mg2+-selective transporters, there has been enormous interest in the field. However, there is still a paucity of information, and much research is needed to clarify the exact mechanisms of magnesium regulation in the cardiovascular system and the implications of aberrant transmembrane magnesium transport in the pathogenesis of hypertension and other vascular diseases.

Thomas Voets - One of the best experts on this subject based on the ideXlab platform.

  • Mapping the expression of transient receptor potential channels across murine placental development
    Cellular and Molecular Life Sciences, 2021
    Co-Authors: Katrien De Clercq, Thomas Voets, Vicente Pérez-garcía, Rieta Van Bree, Federica Pollastro, Karen Peeraer, Joris Vriens
    Abstract:

    Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.

  • functional expression of transient receptor potential channels in human endometrial stromal cells during the luteal phase of the menstrual cycle
    Human Reproduction, 2015
    Co-Authors: Katrien De Clercq, Thomas Voets, Rieta Van Bree, Karen Peeraer, Katharina Held, Christel Meuleman, Carla Tomassetti, Thomas Dhooghe, Joris Vriens
    Abstract:

    STUDY QUESTION Are members of the transient receptor potential (TRP) channel superfamily functionally expressed in the human endometrial stroma? SUMMARY ANSWER The Ca(2+)-permeable ion channels TRPV2, TRPV4, TRPC6 and TRPM7 are functionally expressed in primary endometrial stromal cells. WHAT IS KNOWN ALREADY Intercellular communication between epithelial and stromal endometrial cells is required to initiate decidualization, a prerequisite for successful implantation. TRP channels are possible candidates as signal transducers involved in cell-cell communication, but no fingerprint is available of the functional distribution of TRP channels in the human endometrium during the luteal phase of the menstrual cycle. STUDY DESIGN, SIZE, DURATION Endometrial biopsy samples (previously frozen) from patients of reproductive age with regular menstrual cycles, who were undergoing diagnostic laparoscopic surgery for pain and/or infertility, were analysed. Samples were obtained from the menstrual (Days 1-5, n = 3), follicular (Days 6-14, n = 6), early luteal (Days 15-20, n = 5) and late luteal (Days 21-28, n = 5) phases. In addition, a total of 13 patient samples taken during the luteal phase were used to set up primary cell cultures for further experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR (qRT-PCR), immunocytochemistry, Fura2-based Ca(2+)-microfluorimetry and whole-cell patch clamp experiments were performed to study the functional expression pattern of TRP channels. Specific pharmacological agents, such as Δ(9)-tetrahydrocannabinol, GSK1016790A and 1-oleoyl-2-acetyl-glycerol, were used to functionally assess the expression of TRPV2, TRPV4 and TRPC6, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Expression of TRPV2, TRPV4, TRPC1, TRPC4, TRPC6, TRPM4 and TRPM7 was detected at the mRNA level in endometrial biopsies (n = 19) and in primary endometrial stromal cell cultures obtained from patients during the luteal phase (n = 5) of the menstrual cycle. Messenger RNA levels of TRPV2, TRPC4 and TRPC6 were significantly increased (P < 0.01) in the late luteal phase compared with the early luteal phase. Immunocytochemistry experiments showed a positive staining for TRPV2, TRPV4, TRPC6 and TRPM7 in the plasma membrane and in the cytoplasm of primary endometrial stromal cells. Ca(2+)-microfluorimetry revealed significant increases (P < 0.001) in intracellular Ca(2+) levels when stromal cells were incubated with specific activators of TRPV2, TRPV4 and TRPC6. Further functional characterization was performed using whole-cell patch clamp experiments. Taken together, these data provide evidence for the functional activity of TRPV2, TRPV4, TRPC6 and TRPM7 channels in primary stromal cell cultures. LIMITATIONS, REASONS FOR CAUTION Although mRNA levels are detected for TRPV6, TRPC1, TRPC4 and TRPM4, the limited supply of specific antibodies and lack of selective pharmacological agents restricted any additional analysis of these ion channels. WIDER IMPLICATIONS OF THE FINDINGS Embryo implantation is a dynamic developmental process that integrates many signalling molecules into a precisely orchestrated programme. Our findings identified certain members of the TRP superfamily as candidate sensors in the epithelial-stromal crosstalk. These results are very helpful to unravel the signalling cascade required for successful embryo implantation. In addition, this knowledge could lead to new strategies to correct implantation failure and facilitate the development of novel non-hormonal contraceptives. STUDY FUNDING/ COMPETING INTERESTS This work was supported by grants from the Research Foundation-Flanders (G.0856.13N to J.V.), the Research Council of the KU Leuven (OT/13/113 to J.V. and T.D. and PF-TRPLe to T.V.) and by the Planckaert-De Waele fund (to J.V.). K.D.C. and K.H. are funded by the FWO Belgium. None of the authors have a conflict of interest.

  • Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse
    BMC Neuroscience, 2013
    Co-Authors: Ine Vandewauw, Grzegorz Owsianik, Thomas Voets
    Abstract:

    Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG) in the head and from a string of dorsal root ganglia (DRG) located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP) superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  • The Selectivity Filter of the Cation Channel TRPM4
    The Journal of biological chemistry, 2005
    Co-Authors: Jean Prenen, Grzegorz Owsianik, Chunbo Wang, Annelies Janssens, Michael X Zhu, Thomas Voets
    Abstract:

    Abstract Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca2+. In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca2+-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 (981EDMDVA986) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca2+, voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca2+ and Mg2+ as well as Ca2+ permeation. Neutralization of Glu981 resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp982 yielded a functional channel that exhibited extremely fast desensitization (τ < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp984 resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln977 by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca2+ permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.

  • molecular determinants of permeation through the cation channel trpv4
    Journal of Biological Chemistry, 2002
    Co-Authors: Thomas Voets, Annelies Janssens, Jean Prenen, Joris Vriens, Hiroyuki Watanabe, Ulrich Wissenbach, Matthias Bodding, Guy Droogmans
    Abstract:

    TRPM6 and its closest relative TRPM7 are members of the Transient Receptor Potential Melastatin (TRPM) subfamily of cation channels and are known to be Mg 2+ permeable. By aligning the sequence of the putative TRPM6 pore with the pore sequences of the other subfamily members, we located in the loop between the fifth and the sixth transmembrane domain, a stretch of amino acids residues, 1028 GEIDVC 1033 , as the potential selectivity filter. Two negatively charged residues, E 1024 (conserved in TRPM6, TRPM7, TRPM1 and TRPM3) and D 1031 (conserved along the entire TRPM subfamily), were identified as important determinants of cation permeation through TRPM6, because neutralization of both residues into an alanine resulted in non-functional channels. Neutralization of E 1029 (conserved in TRPM6, TRPM7, TRPM4 and TRPM5) resulted in channels with increased conductance for Ba 2+ and Zn 2+ , decreased ruthenium red sensitivity and larger pore diameter compared to wild-type TRPM6. Changing the residue I 1030 into methionine, resulted in channels with lower conductance for Ni 2+ , decreased sensitivity to ruthenium red block and reduced pore diameter. Thus, these data demonstrate that amino acid residues E 1024 ,I 1030 and D 1031 are important for channel function and that subtle amino acid variation in the pore region accounts for TRPM6 permeation properties.

Christian Harteneck - One of the best experts on this subject based on the ideXlab platform.

  • inhibition of TRPM2 cation channels by n p amylcinnamoyl anthranilic acid
    British Journal of Pharmacology, 2006
    Co-Authors: Robert Kraft, Christian Grimm, Henning Frenzel, Christian Harteneck
    Abstract:

    1 TRPM2 is a Ca2+-permeable nonselective cation channel activated by intracellular ADP-ribose (ADPR) and by hydrogen peroxide (H2O2). We investigated the modulation of TRPM2 activity by N-(p-amylcinnamoyl)anthranilic acid (ACA). ACA has previously been reported to inhibit phospholipase A2 (PLA2). 2 Using patch-clamp and calcium-imaging techniques, we show that extracellular application of 20 μM ACA completely blocked ADPR-induced whole-cell currents and H2O2-induced Ca2+ signals (IC50=1.7 μM) in HEK293 cells transfected with human TRPM2. Two other PLA2 inhibitors, p-bromophenacyl bromide (BPB; 100 μM) and arachidonyl trifluoromethyl ketone (20 μM), had no significant effect on ADPR-stimulated TRPM2 activity. 3 Inhibition of TRPM2 whole-cell currents by ACA was voltage independent and accelerated at decreased pH. ACA was ineffective when applied intracellularly. The single-channel conductance was not changed during ACA treatment, suggesting a reduction of TRPM2 open probability by modulating channel gating. 4 ACA (20 μM) also blocked currents through human TRPM8 and TRPC6 expressed in HEK293 cells, while BPB (100 μM) was ineffective. TRPC6-mediated currents (IC50=2.3 μM) and TRPM8-induced Ca2+ signals (IC50=3.9 μM) were blocked in a concentration-dependent manner. 5 ADPR-induced currents in human U937 cells, endogeneously expressing TRPM2 protein, were fully suppressed by 20 μM ACA. 6 Our data indicate that ACA modulates the activity of different TRP channels independent of PLA2 inhibition. Owing to its high potency and efficacy ACA can serve, in combination with other blockers, as a useful tool for studying the unknown function of TRPM2 in native cells. British Journal of Pharmacology (2006) 148, 264–273. doi:10.1038/sj.bjp.0706739

  • The mammalian melastatin-related transient receptor potential cation channels: an overview
    Pflügers Archiv - European Journal of Physiology, 2005
    Co-Authors: Robert Kraft, Christian Harteneck
    Abstract:

    The mammalian melastatin-related transient receptor potential (TRPM) subfamily contains eight members. TRPM proteins, consisting of six putative transmembrane domains and intracellular N and C termini, form monovalent-permeable cation channels with variable selectivity for Ca2+, Mg2+ and other divalent cations. Some functions are linked to their individual cation selectivity: the highly divalent-permeable cation channels TRPM6 and TRPM7 are involved in the control of Mg2+ influx, whereas the Ca2+-impermeable channels TRPM4 and TRPM5 modulate cellular Ca2+ entry by determining the membrane potential. TRPM2, TRPM3 and TRPM8 mediate a direct influx of Ca2+ in response to specific stimuli. Electrophysiological properties of the founding member, melastatin (TRPM1), are unexplored. The individual TRPM members are activated by different stimuli, including voltage, Ca2+, temperature, cell swelling, lipid compounds and other endogenous or exogenous ligands. This review summarizes molecular features, activation mechanisms, biophysical properties and modulators of TRPM channels.

  • Function and pharmacology of TRPM cation channels
    Naunyn-Schmiedeberg's Archives of Pharmacology, 2005
    Co-Authors: Christian Harteneck
    Abstract:

    The physiological function and cellular role of some members of the TRPM family are poorly understood and still mysterious. Melastatin, the founding member of the TRPM group, is the most prominent example of the mysteries involved in understanding TRP channel function. Melastatin or TRPM1 was first cloned in 1998 and since then it has been suggested that it functions as a tumor suppressor protein in melanocytes. On the other hand, TRPM8 and TRPA1 have been described as cold receptors, TRPM4 and TRPM5 as calcium-activated nonselective cation channels, TRPM6 and TRPM7 as magnesium-permeable and magnesium-modulated cation channels, TRPM2 as an ADP-ribose-activated channel of macrophages, and TRPM3 as a hypo-osmolarity- and sphingosine-activated channel. There are many unsolved questions and many studies have to be performed to understand the overall function of the TRPM family. In addition to electrophysiological recordings and biochemical characterization, the use of compounds modulating TRPM channel function has often been helpful to study TRPM channels in a cellular context. Therefore, the review will summarize the known functions, activation mechanisms, and pharmacological modulations of the TRPM channels.

B.a. Miller - One of the best experts on this subject based on the ideXlab platform.

  • The Role of TRP Channels in Oxidative Stress-induced Cell Death
    The Journal of Membrane Biology, 2006
    Co-Authors: B.a. Miller
    Abstract:

    The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na^+ and Ca^2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H_2O_2 resulted in Ca^2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H_2O_2-induced Ca^2+ influx, the increase in [Ca^2+]_i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca^2+]_i and increased apoptosis after treatment with H_2O_2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca^2+]_i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H_2O_2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.

  • The Role of TRP Channels in Oxidative Stress-induced Cell Death
    The Journal of Membrane Biology, 2006
    Co-Authors: B.a. Miller
    Abstract:

    The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na^+ and Ca^2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H_2O_2 resulted in Ca^2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H_2O_2-induced Ca^2+ influx, the increase in [Ca^2+]_i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca^2+]_i and increased apoptosis after treatment with H_2O_2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca^2+]_i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H_2O_2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.

Joris Vriens - One of the best experts on this subject based on the ideXlab platform.

  • Mapping the expression of transient receptor potential channels across murine placental development
    Cellular and Molecular Life Sciences, 2021
    Co-Authors: Katrien De Clercq, Thomas Voets, Vicente Pérez-garcía, Rieta Van Bree, Federica Pollastro, Karen Peeraer, Joris Vriens
    Abstract:

    Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2 , Trpm6 , and Trpm7 . Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.

  • functional expression of transient receptor potential channels in human endometrial stromal cells during the luteal phase of the menstrual cycle
    Human Reproduction, 2015
    Co-Authors: Katrien De Clercq, Thomas Voets, Rieta Van Bree, Karen Peeraer, Katharina Held, Christel Meuleman, Carla Tomassetti, Thomas Dhooghe, Joris Vriens
    Abstract:

    STUDY QUESTION Are members of the transient receptor potential (TRP) channel superfamily functionally expressed in the human endometrial stroma? SUMMARY ANSWER The Ca(2+)-permeable ion channels TRPV2, TRPV4, TRPC6 and TRPM7 are functionally expressed in primary endometrial stromal cells. WHAT IS KNOWN ALREADY Intercellular communication between epithelial and stromal endometrial cells is required to initiate decidualization, a prerequisite for successful implantation. TRP channels are possible candidates as signal transducers involved in cell-cell communication, but no fingerprint is available of the functional distribution of TRP channels in the human endometrium during the luteal phase of the menstrual cycle. STUDY DESIGN, SIZE, DURATION Endometrial biopsy samples (previously frozen) from patients of reproductive age with regular menstrual cycles, who were undergoing diagnostic laparoscopic surgery for pain and/or infertility, were analysed. Samples were obtained from the menstrual (Days 1-5, n = 3), follicular (Days 6-14, n = 6), early luteal (Days 15-20, n = 5) and late luteal (Days 21-28, n = 5) phases. In addition, a total of 13 patient samples taken during the luteal phase were used to set up primary cell cultures for further experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative real-time PCR (qRT-PCR), immunocytochemistry, Fura2-based Ca(2+)-microfluorimetry and whole-cell patch clamp experiments were performed to study the functional expression pattern of TRP channels. Specific pharmacological agents, such as Δ(9)-tetrahydrocannabinol, GSK1016790A and 1-oleoyl-2-acetyl-glycerol, were used to functionally assess the expression of TRPV2, TRPV4 and TRPC6, respectively. MAIN RESULTS AND THE ROLE OF CHANCE Expression of TRPV2, TRPV4, TRPC1, TRPC4, TRPC6, TRPM4 and TRPM7 was detected at the mRNA level in endometrial biopsies (n = 19) and in primary endometrial stromal cell cultures obtained from patients during the luteal phase (n = 5) of the menstrual cycle. Messenger RNA levels of TRPV2, TRPC4 and TRPC6 were significantly increased (P < 0.01) in the late luteal phase compared with the early luteal phase. Immunocytochemistry experiments showed a positive staining for TRPV2, TRPV4, TRPC6 and TRPM7 in the plasma membrane and in the cytoplasm of primary endometrial stromal cells. Ca(2+)-microfluorimetry revealed significant increases (P < 0.001) in intracellular Ca(2+) levels when stromal cells were incubated with specific activators of TRPV2, TRPV4 and TRPC6. Further functional characterization was performed using whole-cell patch clamp experiments. Taken together, these data provide evidence for the functional activity of TRPV2, TRPV4, TRPC6 and TRPM7 channels in primary stromal cell cultures. LIMITATIONS, REASONS FOR CAUTION Although mRNA levels are detected for TRPV6, TRPC1, TRPC4 and TRPM4, the limited supply of specific antibodies and lack of selective pharmacological agents restricted any additional analysis of these ion channels. WIDER IMPLICATIONS OF THE FINDINGS Embryo implantation is a dynamic developmental process that integrates many signalling molecules into a precisely orchestrated programme. Our findings identified certain members of the TRP superfamily as candidate sensors in the epithelial-stromal crosstalk. These results are very helpful to unravel the signalling cascade required for successful embryo implantation. In addition, this knowledge could lead to new strategies to correct implantation failure and facilitate the development of novel non-hormonal contraceptives. STUDY FUNDING/ COMPETING INTERESTS This work was supported by grants from the Research Foundation-Flanders (G.0856.13N to J.V.), the Research Council of the KU Leuven (OT/13/113 to J.V. and T.D. and PF-TRPLe to T.V.) and by the Planckaert-De Waele fund (to J.V.). K.D.C. and K.H. are funded by the FWO Belgium. None of the authors have a conflict of interest.

  • molecular determinants of permeation through the cation channel trpv4
    Journal of Biological Chemistry, 2002
    Co-Authors: Thomas Voets, Annelies Janssens, Jean Prenen, Joris Vriens, Hiroyuki Watanabe, Ulrich Wissenbach, Matthias Bodding, Guy Droogmans
    Abstract:

    TRPM6 and its closest relative TRPM7 are members of the Transient Receptor Potential Melastatin (TRPM) subfamily of cation channels and are known to be Mg 2+ permeable. By aligning the sequence of the putative TRPM6 pore with the pore sequences of the other subfamily members, we located in the loop between the fifth and the sixth transmembrane domain, a stretch of amino acids residues, 1028 GEIDVC 1033 , as the potential selectivity filter. Two negatively charged residues, E 1024 (conserved in TRPM6, TRPM7, TRPM1 and TRPM3) and D 1031 (conserved along the entire TRPM subfamily), were identified as important determinants of cation permeation through TRPM6, because neutralization of both residues into an alanine resulted in non-functional channels. Neutralization of E 1029 (conserved in TRPM6, TRPM7, TRPM4 and TRPM5) resulted in channels with increased conductance for Ba 2+ and Zn 2+ , decreased ruthenium red sensitivity and larger pore diameter compared to wild-type TRPM6. Changing the residue I 1030 into methionine, resulted in channels with lower conductance for Ni 2+ , decreased sensitivity to ruthenium red block and reduced pore diameter. Thus, these data demonstrate that amino acid residues E 1024 ,I 1030 and D 1031 are important for channel function and that subtle amino acid variation in the pore region accounts for TRPM6 permeation properties.