Tunica Media

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3606 Experts worldwide ranked by ideXlab platform

Bram Trachet - One of the best experts on this subject based on the ideXlab platform.

  • dissecting abdominal aortic aneurysm in angiotensin ii infused mice the importance of imaging
    Current Pharmaceutical Design, 2015
    Co-Authors: Bram Trachet, Rodrigo A Fragasilva, Alessandra Piersigilli, Patrick Segers, Nikolaos Stergiopulos
    Abstract:

    Introduction. Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the Tunica Media in the vicinity of suprarenal side branches. Aims. The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. Results and conclusion. We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, highfrequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the Tunica Media in the imMediate vicinity of small side branches.

  • dissecting abdominal aortic aneurysm in ang ii infused mice suprarenal branch ruptures and apparent luminal dilatation
    Cardiovascular Research, 2015
    Co-Authors: Bram Trachet, Rodrigo A Fragasilva, Alessandra Piersigilli, Alain Tedgui, Jessica Sordetdessimoz, Alberto Astolfo, Carole Van Der Donckt, Peter Modregger
    Abstract:

    Aims In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. Methods and results We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the Tunica Media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the Tunica Media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the Tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. Conclusion Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.

Alessandra Piersigilli - One of the best experts on this subject based on the ideXlab platform.

  • dissecting abdominal aortic aneurysm in angiotensin ii infused mice the importance of imaging
    Current Pharmaceutical Design, 2015
    Co-Authors: Bram Trachet, Rodrigo A Fragasilva, Alessandra Piersigilli, Patrick Segers, Nikolaos Stergiopulos
    Abstract:

    Introduction. Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the Tunica Media in the vicinity of suprarenal side branches. Aims. The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. Results and conclusion. We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, highfrequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the Tunica Media in the imMediate vicinity of small side branches.

  • dissecting abdominal aortic aneurysm in ang ii infused mice suprarenal branch ruptures and apparent luminal dilatation
    Cardiovascular Research, 2015
    Co-Authors: Bram Trachet, Rodrigo A Fragasilva, Alessandra Piersigilli, Alain Tedgui, Jessica Sordetdessimoz, Alberto Astolfo, Carole Van Der Donckt, Peter Modregger
    Abstract:

    Aims In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. Methods and results We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the Tunica Media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the Tunica Media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the Tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. Conclusion Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.

Peter Modregger - One of the best experts on this subject based on the ideXlab platform.

  • dissecting abdominal aortic aneurysm in ang ii infused mice suprarenal branch ruptures and apparent luminal dilatation
    Cardiovascular Research, 2015
    Co-Authors: Bram Trachet, Rodrigo A Fragasilva, Alessandra Piersigilli, Alain Tedgui, Jessica Sordetdessimoz, Alberto Astolfo, Carole Van Der Donckt, Peter Modregger
    Abstract:

    Aims In this work, we provide novel insight into the morphology of dissecting abdominal aortic aneurysms in angiotensin II-infused mice. We demonstrate why they exhibit a large variation in shape and, unlike their human counterparts, are located suprarenally rather than infrarenally. Methods and results We combined synchrotron-based, ultra-high resolution ex vivo imaging (phase contrast X-Ray tomographic microscopy) with in vivo imaging (high-frequency ultrasound and contrast-enhanced micro-CT) and image-guided histology. In all mice, we observed a tear in the Tunica Media of the abdominal aorta near the ostium of the celiac artery. Independently we found that, unlike the gradual luminal expansion typical for human aneurysms, the outer diameter increase of angiotensin II-induced dissecting aneurysms in mice was related to one or several intramural haematomas. These were caused by ruptures of the Tunica Media near the ostium of small suprarenal side branches, which had never been detected by the established small animal imaging techniques. The tear near the celiac artery led to apparent luminal dilatation, while the intramural haematoma led to a dissection of the Tunica adventitia on the left suprarenal side of the aorta. The number of ruptured branches was higher in those aneurysms that extended into the thoracic aorta, which explained the observed variability in aneurysm shape. Conclusion Our results are the first to describe apparent luminal dilatation, suprarenal branch ruptures, and intramural haematoma formation in dissecting abdominal aortic aneurysms in mice. Moreover, we validate and demonstrate the vast potential of phase contrast X-ray tomographic microscopy in cardiovascular small animal applications.

Christophe Guignabert - One of the best experts on this subject based on the ideXlab platform.

  • chronic inflammation within the vascular wall in pulmonary arterial hypertension more than a spectator
    Cardiovascular Research, 2020
    Co-Authors: Alice Huertas, Marc Humbert, Christophe Guignabert
    Abstract:

    This review seeks to provide an update of preclinical findings and available clinical data on the chronic persistent inflammation and its direct role on the pulmonary arterial hypertension (PAH) progression. We reviewed the different mechanisms by which the inflammatory and immune pathways contribute to the structural and functional changes occurring in the three vascular compartments: the Tunica intima, Tunica Media, and Tunica adventitia. We also discussed how these inflammatory Mediator changes may serve as a biomarker of the PAH progression and summarize unanswered questions and opportunities for future studies in this area.

Patrizia Nigro - One of the best experts on this subject based on the ideXlab platform.

  • Vascular smooth muscle cells in Marfan syndrome aneurysm: the broken bricks in the aortic wall
    Cellular and Molecular Life Sciences, 2017
    Co-Authors: Gianluca L. Perrucci, Erica Rurali, Aoife Gowran, Alessandro Pini, Carlo Antona, Roberto Chiesa, Giulio Pompilio, Patrizia Nigro
    Abstract:

    Marfan syndrome (MFS) is a connective tissue disorder with multiple organ manifestations. The genetic cause of this syndrome is the mutation of the FBN1 gene, encoding the extracellular matrix (ECM) protein fibrillin-1. This genetic alteration leads to the degeneration of microfibril structures and ECM integrity in the Tunica Media of the aorta. Indeed, thoracic aortic aneurysm and dissection represent the leading cause of death in MFS patients. To date, the most effective treatment option for this pathology is the surgical substitution of the damaged aorta. To highlight novel therapeutic targets, we review the molecular mechanisms related to MFS etiology in vascular smooth muscle cells, the foremost cellular type involved in MFS pathogenesis.