Unisexuality

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 5733 Experts worldwide ranked by ideXlab platform

Sonia Trujilloargueta - One of the best experts on this subject based on the ideXlab platform.

  • on the possible role of nonreproductive traits for the evolution of Unisexuality life history variation among males females and hermaphrodites in opuntia robusta cactaceae
    Ecology and Evolution, 2018
    Co-Authors: Rafael F Del Castillo, Sonia Trujilloargueta
    Abstract:

    In angiosperms, dioecy has arisen in 871-5,000 independent events, distributed in approximately 43% of the flowering families. The reproductive superiority of unisexuals has been the favorite explanation for the evolution of separate sexes. However, in several instances, the observed reproductive performance of unisexuals, if any, does not seem to compensate for the loss of one of the sex functions. The involvement of fitness components not directly associated with reproduction is a plausible hypothesis that has received little attention. Life-history traits recently recognized as predictors of plant performance were compared among males, females, and hermaphrodites of a rare trioecious Opuntia robusta population in the field, using the cladode as the study unit. Cladode mortality by domestic herbivores was common and higher in females and hermaphrodites than in males. Males, females, or both displayed lower shrinkage and higher rates of survival, growth, and reproductive frequency than hermaphrodites. Unisexuals simultaneously outperformed hermaphrodites in demographic traits known to compete for common limiting resources, such as the acceleration of reproductive maturation (progenesis) and survival. A meta-analysis combining the outcomes of each of the analyzed life-history traits revealed a tendency of males (d++ = 1.03) and females (d++ = 0.93) to outperform hermaphrodites in presumably costly demographic options. Clonality is induced by human or domestic animal plant sectioning; and males and females highly exceeded hermaphrodites in their clonality potential by a factor of 8.3 and 5.3, respectively. The performances of unisexuals in the analyzed life-history traits may enhance their reproductive potential in the long run and their clonality potential and could explain the observed increase of Unisexuality in the population. Life-history traits can be crucial for the evolution of Unisexuality, but their impact appears to be habitat specific and may involve broad ontogenetic changes.

Manfred Schartl - One of the best experts on this subject based on the ideXlab platform.

  • Analysis of a possible independent origin of triploid P. formosa outside of the Río Purificación river system
    Frontiers in Zoology, 2007
    Co-Authors: Susanne Schories, Kathrin P. Lampert, Dunja K. Lamatsch, Francisco León, Manfred Schartl
    Abstract:

    Background Unisexuality, or all female reproduction, is rare among vertebrates. Studying these exceptional organisms may give useful information with respect to the evolution and maintenance of sexual reproduction. Poecilia formosa was the first unisexual vertebrate species to be detected and since then has served as a paradigmatic organism for Unisexuality and studies on the evolution of sex. It reproduces through gynogenesis, using sperm of males from related species to trigger parthenogenetic development of the unreduced diploid eggs. Like in other unisexual vertebrates, triploids occur in a certain range of P. formosa. It has been suggested that the addition of the host species derived third chromosome set is evolutionary important. Clonal organisms lack sufficient genotypic diversity for adaptive changes to variable environments. Also non-recombining genomes cannot purge deleterious mutations and therefore unisexual organisms should suffer from a genomic decay. Thus, polyploidization leading to triploidy should bring "fresh" genetic material into the asexual lineage. To evaluate the importance of triploidy for maintaining the asexual species, it is important to know whether such an introgression event happens at a reasonable frequency.

  • pseudomale behaviour and spontaneous masculinization in the all female teleost poecilia formosa teleostei poeciliidae
    Behaviour, 1992
    Co-Authors: Ingo Schlupp, Jakob Parzefall, Jorg T Epplen, Indrajit Nanda, M. Schmid, Manfred Schartl
    Abstract:

    Pseudosexual behaviour is a rare phenomenon associated with Unisexuality in vertebrates. In the gynogenetic, all-female teleost Poecilia formosa, rare individuals occur that resemble males of closely related gonochoristic species both in behaviour and external morphology. These masculinized gynogens and normal gynogens are members of the same clone, as demonstrated by DNA-fingerprinting. The behaviour of these masculinized gynogens is described and compared to the behaviour of the gonochoristic species Poecilia mexicana, P. latipinna and their hybrid as well as androgen-treated individuals of P. formosa. No statistically significant differences were found between masculinized gynogens and hormone-treated individuals nor between the gonochoristic P. mexicana and P. latipinna males. Differences exist between gonochoristic and unisexual species. Possible causes and effects of masculinized gynogens are discussed.

Rafael F Del Castillo - One of the best experts on this subject based on the ideXlab platform.

  • on the possible role of nonreproductive traits for the evolution of Unisexuality life history variation among males females and hermaphrodites in opuntia robusta cactaceae
    Ecology and Evolution, 2018
    Co-Authors: Rafael F Del Castillo, Sonia Trujilloargueta
    Abstract:

    In angiosperms, dioecy has arisen in 871-5,000 independent events, distributed in approximately 43% of the flowering families. The reproductive superiority of unisexuals has been the favorite explanation for the evolution of separate sexes. However, in several instances, the observed reproductive performance of unisexuals, if any, does not seem to compensate for the loss of one of the sex functions. The involvement of fitness components not directly associated with reproduction is a plausible hypothesis that has received little attention. Life-history traits recently recognized as predictors of plant performance were compared among males, females, and hermaphrodites of a rare trioecious Opuntia robusta population in the field, using the cladode as the study unit. Cladode mortality by domestic herbivores was common and higher in females and hermaphrodites than in males. Males, females, or both displayed lower shrinkage and higher rates of survival, growth, and reproductive frequency than hermaphrodites. Unisexuals simultaneously outperformed hermaphrodites in demographic traits known to compete for common limiting resources, such as the acceleration of reproductive maturation (progenesis) and survival. A meta-analysis combining the outcomes of each of the analyzed life-history traits revealed a tendency of males (d++ = 1.03) and females (d++ = 0.93) to outperform hermaphrodites in presumably costly demographic options. Clonality is induced by human or domestic animal plant sectioning; and males and females highly exceeded hermaphrodites in their clonality potential by a factor of 8.3 and 5.3, respectively. The performances of unisexuals in the analyzed life-history traits may enhance their reproductive potential in the long run and their clonality potential and could explain the observed increase of Unisexuality in the population. Life-history traits can be crucial for the evolution of Unisexuality, but their impact appears to be habitat specific and may involve broad ontogenetic changes.

Clay Sassaman - One of the best experts on this subject based on the ideXlab platform.

  • Sex determination and evolution of Unisexuality in the Conchostraca
    Hydrobiologia, 1995
    Co-Authors: Clay Sassaman
    Abstract:

    Field collected or laboratory-reared samples of 60 species of conchostracans (representing all extant genera) indicate that males and females are equally common in most species. Deviations from this pattern occur in four lineages. Cyzicus and Leptestheria each include at least one unisexual species; many species of Limnadiinae are either unisexual or characterized by female-biased sex ratios; and Cyclestheriidae are either unisexual or express males in the later generations of their life cycles. Laboratory studies indicate that species with sex ratios near unity are gonochoric (obligately sexual), whereas females in species with female-biased sex ratios are capable of both outcrossing and selfing modes of reproduction. Phylogenetic analysis of patterns of reproduction suggest that sexual reproduction is the primitive condition. Genetic analysis of sexual species indicate that gender is determined by one or a few genetic factors and that the male-determining allele is recessive. The inheritance of gender in androdioecious species (where females are capable of self-fertilization) is similar to that in sexual species. Androdioecy is likely to be the intermediate stage between obligately sexual reproduction and Unisexuality in the Limnadiinae. The phylogenetic distribution of sex ratio variation suggests that Unisexuality in Cyzicidae, Leptestheriidae, and Cyclestheriidae has arisen independently of that in the Limnadiinae and that these cases have evolved by different evolutionary pathways.

Jesús Gómez-zurita - One of the best experts on this subject based on the ideXlab platform.

  • Assessment of the role of Wolbachia in mtDNA paraphyly and the evolution of Unisexuality in Calligrapha (Coleoptera: Chrysomelidae).
    Ecology and evolution, 2019
    Co-Authors: Jesús Gómez-zurita
    Abstract:

    Calligrapha is a New World leaf beetle genus that includes several unisexual species in northeastern North America. Each unisexual species had an independent hybrid origin involving different combinations of bisexual species. However, surprisingly, they all cluster in a single mtDNA clade and with some individuals of their parental species, which are in turn deeply polyphyletic for mtDNA. This pattern is suggestive of a selective sweep which, together with mtDNA taxonomic incongruence and occurrence of Unisexuality in Calligrapha, led to hypothesize that Wolbachia might be responsible. I tested this hypothesis studying the correlation between diversity of Wolbachia and well-established mtDNA lineages in >500 specimens of two bisexual species of Calligrapha and their derived unisexual species. Wolbachia appears highly prevalent (83.4%), and fifteen new supergroup-A strains of the bacteria are characterized, belonging to three main classes: wCallA, occupying the whole species ranges, and wCallB and wCallC, narrowly parapatric, infecting beetles with highly divergent mtDNAs where they coexist. Most beetles (71.6%) carried double infections of wCallA with another sequence class. Bayesian inference of ancestral character states and association tests between bacterial diversity and the mtDNA genealogy show that each mtDNA lineage of Calligrapha has specific types of infection. Moreover, shifts can be explained by horizontal or vertical transfer from local populations to an expanding lineage and cytoplasmic incompatibility between wCallB and wCallC types, suggesting that the symbionts hitchhike with the host and are not responsible for selective mtDNA sweeps. Lack of evidence for sweeps and the fact that individuals in the unisexual clade are uninfected or infected by the widespread wCallA type indicate that Wolbachia does not induce Unisexuality in Calligrapha, although they may manipulate host reproduction through cytoplasmic incompatibility.

  • THE EVOLUTION OF Unisexuality IN CALLIGRAPHA LEAF BEETLES: MOLECULAR AND ECOLOGICAL INSIGHTS ON MULTIPLE ORIGINS VIA INTERSPECIFIC HYBRIDIZATION
    Evolution; international journal of organic evolution, 2006
    Co-Authors: Jesús Gómez-zurita, Daniel J. Funk, Alfried P. Vogler
    Abstract:

    Interspecific hybridization is a well-established cause of unisexual origins in vertebrates. This mechanism is also suspected in other apomictic taxa, but compelling evidence is rare. Here, we evaluate this mechanism and other hypotheses for the evolutionary origins of Unisexuality through an investigation of Calligrapha leaf beetles. This group provides an intriguing subject for studies of unisexual evolution because it presents a rare insect example of multiple apomictic thelytokous species within a primarily bisexual genus. To investigate unisexual evolution, this study conducts the first molecular systematic analysis of Calligrapha. This involved the collection and analysis of about 3000 bp of DNA sequences—representing RNA and protein-coding loci from mitochondrial and nuclear ge- nomes—from 54 specimens of 25 Calligrapha species, including four unisexual tetraploid taxa. Phylogenetic and molecular clock analyses indicated independent and single evolutionary origins of each of these unisexual species during the Pleistocene. Significant phylogenetic incongruence was detected between mitochondrial and nuclear datasets and found to be especially associated with the asexual taxa. This pattern is expected when unisexual lineages arise via interspecific hybridization and thus represent genetic mosaics that possess certain nuclear alleles from the paternal species lineage and mitochondrial DNA (mtDNA) alleles from the maternal parent. Analyzing the mtDNA and nuclear relatedness of unisexuals with corresponding haplotypes of bisexual Calligrapha species allowed the putative iden- tification of these maternal and paternal species lineages for each unisexual species. Strong phenotypic similarities between unisexual taxa and their paternal parent species supported a model that involves both backcrosses of inter- specific hybrids with a paternal parent and unreduced gametes. This model accounts for the origins of apomixis, polyploidy, and an overrepresentation of paternal nuclear alleles (and associated phenotypes) in unisexuals. This model is also consistent with the tetraploid karyotypes of unisexual Calligrapha, in which three sets of chromosomes (of presumed paternal ancestry) are quite morphologically homogeneous compared to the fourth. Especially intriguing was a consistent association of unisexual species with the host plant of the paternal parent but never with the maternal host. The statistical implausibility of these patterns occurring by chance further supports our inference of parental species. Moreover, it points to a potentially critical role for host-association in the formation and preservation of unisexual lineages. These findings suggest that ecological factors are critical for the diversification of unisexual as well as bisexual taxa and thus point out new research directions in the area of ecological speciation.