Vandermonde Determinant

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1017 Experts worldwide ranked by ideXlab platform

Sergei Silvestrov - One of the best experts on this subject based on the ideXlab platform.

Karl Lundengård - One of the best experts on this subject based on the ideXlab platform.

Cristina Ballantine - One of the best experts on this subject based on the ideXlab platform.

  • Powers of the Vandermonde Determinant, Schur functions, and the dimension game
    2013
    Co-Authors: Cristina Ballantine
    Abstract:

    Abstract. Since every even power of the Vandermonde Determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function sµ in the decomposition of an even power of the Vandermonde Determinant in n + 1 variables in terms of the coefficient of the Schur function sλ in the decomposition of the same even power of the Vandermonde Determinant in n variables if the Young diagram of µ is obtained from the Young diagram of λ by adding a tetris type shape to the top or to the left. Résumé. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combinatoires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul du coefficient de la fonction de Schur sµ dans la décomposition d’une puissance paire du déterminant de Vandermonde en n + 1 variables, en fonction du coefficient de la fonction de Schur sλ dans la décomposition de la même puissance paire du déterminant de Vandermonde en n variables, lorsque le diagramme de Young de µ est obtenu à partir du diagramme de Young de λ par l’addition d’une forme de type tetris vers le haut ou vers la gauche

  • Powers of the Vandermonde Determinant, Schur functions and recursive formulas
    Journal of Physics A: Mathematical and Theoretical, 2012
    Co-Authors: Cristina Ballantine
    Abstract:

    The decomposition of an even power of the Vandermonde Determinant in terms of the basis of Schur functions matches the decomposition of the Laughlin wavefunction as a linear combination of Slater wavefunctions and thus contributes to the understanding of the quantum Hall effect. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, we give recursive formulas for the coefficient of the Schur function sμ in the decomposition of an even power of the Vandermonde Determinant in n + 1 variables in terms of the coefficient of the Schur function sλ in the decomposition of the same even power of the Vandermonde Determinant in n variables if the Young diagram of μ is obtained from the Young diagram of λ by adding a tetris type shape to the top or to the left.

  • Powers of the Vandermonde Determinant, Schur Functions, and recursive formulas
    Journal of Physics A: Mathematical and Theoretical, 2012
    Co-Authors: Cristina Ballantine
    Abstract:

    Since every even power of the Vandermonde Determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, we give recursive formulas for the coefficient of the Schur function $s_{\m}$ in the decomposition of an even power of the Vandermonde Determinant in $n + 1$ variables in terms of the coefficient of the Schur function $s_{\l}$ in the decomposition of the same even power of the Vandermonde Determinant in $n$ variables if the Young diagram of $\m$ is obtained from the Young diagram of $\l$ by adding a tetris type shape to the top or to the left. An extended abstract containing the statement of the results presented here appeared in the Proceedings of FPSAC11

  • Powers of the Vandermonde Determinant, Schur functions, and the dimension game
    Discrete Mathematics & Theoretical Computer Science, 2011
    Co-Authors: Cristina Ballantine
    Abstract:

    Since every even power of the Vandermonde Determinant is a symmetric polynomial, we want to understand its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the Schur function $s_μ$ in the decomposition of an even power of the Vandermonde Determinant in $n+1$ variables in terms of the coefficient of the Schur function $s_λ$ in the decomposition of the same even power of the Vandermonde Determinant in $n$ variables if the Young diagram of $μ$ is obtained from the Young diagram of $λ$ by adding a tetris type shape to the top or to the left.

Jonas Österberg - One of the best experts on this subject based on the ideXlab platform.

Itai Ben Yaacov - One of the best experts on this subject based on the ideXlab platform.