Water Mill

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 31698 Experts worldwide ranked by ideXlab platform

Vila Vilariño, María Paloma - One of the best experts on this subject based on the ideXlab platform.

  • Evaluación de compatibilidad patrimonial para el renacimiento energético de los molinos de agua en el valle del Lóuzara
    'Universidad Politecnica de Madrid - University Library', 2022
    Co-Authors: Vila Vilariño, María Paloma
    Abstract:

    La conservación del amplio patrimonio molinar hidráulico pasa por su rehabilitación y reutilización. Sin embargo, no todos los usos viables económicamente son compatibles con los bienes existentes. Actualmente, en el marco europeo con nula incidencia en el ámbito español, se están realizando investigaciones para el aprovechamiento de la microhidráulica y propuestas de rehabilitación de antiguos molinos de agua para la producción de energía eléctrica, a través de la instalación de microhidrogeneradores en las infraestructuras existentes. La reutilización del patrimonio permite conservarlo, pero debe ser una propuesta compatible que respete los valores tangibles e intangibles del bien. La propuesta europea sobre la reutilización energética de los molinos de agua históricos, nace desde el interés del aprovechamiento de la energía renovable y señala entre sus beneficios la propia conservación de estos bienes. Ante esta propuesta generalizada, surge la pregunta cómo y a qué tipo de patrimonio hidráulico favorecerá, para contestarla se ha realizado un enfoque patrimonial proponiendo evaluar la compatibilidad patrimonial, mediante un método que permita comprobar cómo afecta la propuesta de reúso a la significación del bien. En la parte más exploratoria de la investigación se desarrolla un nuevo método para evaluar la compatibilidad patrimonial. En el modelo, primero se han establecido unos criterios de compatibilidad e incompatibilidad basados en los principios de la conservación del patrimonio y los requisitos de la función. Segundo, se ha desarrollado un método para valorar el cambio de significación que se basa en la identificación y cuantificación de los valores patrimoniales. Finalmente, al ser un método práctico, se presenta la aplicación realizada sobre una muestra del patrimonio hidráulico en un río español. El ámbito de la muestra molinar estudiada ha sido el valle del Lóuzara, ubicado en las sierras orientales de Galicia (España), es un paisaje cultural de gran riqueza natural. En este estudio se constata la existencia histórica de molinos harineros, batanes, ferrerías y fábricas de luz que se encuentran sin uso, olvidados, amenazados y sin catalogar. Para conocer la muestra, primeramente, se presenta el estudio histórico a través de la consulta del Catastro del Marques de la Ensenada, el cual ubica al 74% de los molinos en el siglo XVIII. Posteriormente, se presenta el catálogo del patrimonio molinar del río Lóuzara, elaborado a partir del trabajo de campo realizado. A través de fichas individuales se ha identificado, caracterizado y evaluado el estado de conservación de 27 bienes. El análisis del conjunto, ha permitido caracterizar y presentar una clasificación tipológica, la situación actual y su importancia en el territorio. Los resultados han mostrado que la propuesta no beneficia por igual a todos los bienes e incluso puede perjudicar a algunos bienes históricos. El método de evaluación permite identificar los bienes compatibles que se corresponden con los bienes que conservan o incrementan sus valores patrimoniales iniciales y los bienes incompatibles que no se benefician de la propuesta energética planteada. Asimismo, permite graduar la compatibilidad y seleccionar los bienes incluyendo un enfoque patrimonial. Los resultados muestran que el 39 % de los molinos del valle de Lóuzara son compatibles, en los cuales la propuesta de revitalización energética es un uso apropiado. El mayor beneficio patrimonial por el aumento de significancia se produce en las fábricas de luz, después lo molinos- fábrica de luz y finalmente los molinos harineros de dos ruedas, identificando los tipos más adecuados en los que se debería priorizar esta propuesta de reúso, por el contrario han resultado incompatibles los bienes de mayor singularidad. En la muestra la propuesta energética permitiría la recuperación de 9 molinos tradicionales, con una potencia acumulada estimada de 63 kW, con capacidad para la producción de la electricidad consumida por los hogares del valle y permitirían ahorrar 166 t anuales de CO2. Extrapolando datos, se concluye que la reutilización energética se puede plantear en un 39% del patrimonio hidráulico histórico, inviable en el 100% planteado por la industria energética que no considera ni el beneficio patrimonial ni el estado actual de los sitios molinares. En Galicia supondría aproximadamente la conservación de 1.698 molinos, y en España la recuperación de más de 7.000 molinos proporcionaría beneficios económicos, sociales, medioambientales, energéticos y patrimoniales. No obstante. los resultados varían en función de la propuesta de reutilización concreta, siendo necesario evaluar el impacto de la misma en cada molino, el método de evaluación de compatibilidad patrimonial desarrollada es una herramienta eficaz para detectar como afecta una propuesta de reutilización a un bien, al identificar individualmente los valores dañados, permite adaptar el proyecto funcional para alcanzar el reúso más apropiado, es aplicable a otras muestras molinares y fácilmente adaptable para estudiar propuestas de reutilización en el campo patrimonial. ----------ABSTRACT---------- Conservation of the extensive Water Mill heritage depends on rehabilitation and reuse. However, not all economically viable uses are compatible with heritage assets. Today, in the European framework, although not in the Spanish sphere, studies are being conducted regarding the use of micro-hydraulics, and proposals are being presented to rehabilitate old Water Mills with the objective of producing electric energy through the installation of micro-hydro generators in the existing structures. The reuse of a heritage asset serves to preserve it. However, an appropriate proposal should respect the asset’s tangible and intangible value. Currently, in Europe, the energetic reuse of historical Water Mills is being proposed. This initiative emerges from an interest in renewable energy and cites in its favour the conservation of these assets, among other benefits. In response to this generalized proposal, the question arises of how and what type of hydraulic heritage asset would be favoured by its implementation. To answer this question, a heritage approach is developed that proposes the evaluation of heritage compatibility using a method that enables us to demonstrate how a proposed reuse would affect the heritage value of an asset. This PhD thesis presents an exploratory study on a new method to evaluate heritage compatibility. In this model, first, several criteria for compatibility and incompatibility are established based on principles of heritage conservation and functional requirements. Second, an assessment method is developed based on the identification and quantification of the significance. Last, the method’s implementation with a hydraulic heritage sample located along a Spanish river is presented. The sample area is the Lóuzara River Valley in the Eastern Sierras of Galicia (Spain), a cultural landscape with substantial natural wealth. This study confirms the existence in the area of historical Water flour Mills, including fulling Mills, ironworks and light factories that are in disuse, forgotten, threatened and unregistered. Thus, it was necessary to study the heritage sites that remain in the area. First, a historical study of these assets was conducted by consulting the Registry of Marques de la Ensenada (Catastro del Marques de la Ensenada). This registry facilitated an initial temporary description of the majority of the inventoried assets and the results show that 74% of the Water Mills are placed in the 18th century. Then, based on the fieldwork, a catalogue of the Lóuzara River Mill heritage sites was created. The conservation status of the catalogued assets was identified, characterized and evaluated using individual data sheets of 27 assets. The analysis facilitated a typological classification of the architecture, its current state and its significance in the territory. These data provide the knowledge required to identify the value of each asset and to apply the method developed for evaluating compatibility with an energetic reuse proposal. The results indicate that the proposal does not benefit all historical assets equally and could damage certain assets. The evaluation method enables the identification of compatible assets that would preserve or increase their initial patrimonial value and incompatible assets that would not benefit from the energy proposal. The results show that 39% of the Mills in the Lóuzara valley are compatible; hence the energy revitalization proposal is an appropriate use. The greatest patrimonial benefit due to the increase in significance is produced first in the light factories, then the light Mills-factory and finally the two-wheel flour Mills. This highlights the most suitable types where you should prioritize this reuse. In contrast the most distinctive assets being incompatible. In the sample, the energy proposal would allow the preservation of 9 traditional Mills, with a power of 63 kW and the capacity to produce the electricity consumed by households in the valley; in addition it would save 166 t per year of CO2. Extrapolating data, it is concluded that energy reuse can be considered adequate in 39% of the historical hydraulic heritage, unfeasible in 100% raised by the energy industry that does not consider either the heritage or the current state of the Mill sites. In Galicia region it would involve approximately the conservation of 1,698 Mills and in Spain the recovery of more than 7,000 Mills would bring economic, environmental, social, energy and heritage benefits. However, the results vary depending on the specific reuse proposal, being necessary to evaluate its impact on the heritage. The method represents an effective instrument for detecting how a proposal of reuse affects an asset. By individually identifying endangered values, it enables the proposed project to be adapted to achieve the most appropriate reuse. It is applicable to other Mill samples and it is easily adaptable to study reuse proposals in the heritage field

Collado-espejo, Pedro E. - One of the best experts on this subject based on the ideXlab platform.

  • Documentación y modelización de una hipótesis de reconstrucción del primer molino hidráulico romano de la península ibérica
    'Universitat Politecnica de Valencia', 2021
    Co-Authors: García-león Josefina, González-garcía, Jesús Á., Collado-espejo, Pedro E.
    Abstract:

    [EN] The accurate graphic survey of an archaeological site is fundamental for its analysis and research. Furthermore, if this site is to be covered by a building and will not be accessible or visible, its documentation is essential, not only to continue with the research, but also to disseminate and enhance the discoveries. An example of this is the "Hoya de los Molinos" archaeological site in Caravaca de la Cruz (Region of Murcia, Spain). This is where the first mark of the wheel of a Roman vertical WaterMill in the Iberian Peninsula has been found. This fact is crucial because remains of Roman vertical-wheeled WaterMills have been found across the Mediterranean but not in the Iberian Peninsula. Moreover, the fact that this WaterMill still has all its structural elements makes this archaeological site in Caravaca de la Cruz very interesting. Due to these facts, it is essential to disseminate this discovery, so that it can be recognized and considered as archaeological and cultural heritage. To that end, the researchers have carried out a three-dimensional (3D) reconstruction of the most characteristic elements, such as the vertical wheel, the gears that allowed grinding the grain, and the building protecting them. A virtual recreation was carried out, based on the historical and building research, which is displayed in an explanatory video. Furthermore, two reproductions were created: one made to scale of the archaeological site with a 3D printer and another one of the hypothetical structure of the Roman WaterMill. To achieve this result, historians, archaeologists and engineers have collaborated, thus enabling not only its adequate dissemination, but also its accurate documentation, in an inclusive manner. Thanks to all the work that this paper describes, the Roman WaterMill found in Caravaca de la Cruz can be known, studied and assessed.[ES] La documentación gráfica y precisa de un yacimiento arqueológico es fundamental para su posterior estudio e investigación. Cuando el yacimiento quede en el subsuelo de un edificio y no sea accessible ni visitable, dicha documentación es imprescindible, no solo para la continuación de la investigación, sino también para poner en valor los hallazgos encontrados. Un ejemplo de ello es el yacimiento arqueológico de “Hoya de los Molinos” en Caravaca de la Cruz (Región de Murcia, España). En la Península Ibérica se ha encontrado la primera impronta de la rueda de un molino vertical hidráulico de época romana. Este hecho es fundamental por dos razones: la primera es que los molinos hidráulicos fueron utilizados por los romanos, no por los árabes como se creyó durante mucho tiempo (hecho que se ha rebatido gracias a los hallazgos arqueológicos); la segunda es que se encontraron restos de molinos hidráulicos en todo el Mediterrráneo, pero no en la Península ibérica. Además, en el yacimiento se hallaron todos los elementos estructurales del molino hidráulico vertical, lo que hace tan interesante este hallazgo. Por los condicionantes descritos es fundamental divulgar el hallazgo para que sea valorado y conocido. Para ello se realizó una reconstrucción tridimensional (3D) de los elementos más característicos, como son la rueda vertical, los engranajes que permitían la molienda de grano y el edificio que los protegía. A tal efecto, se desarrolló una hipotética recreación virtual y se animó en un video explicativo. También se hicieron dos impresiones 3D a escalas diferentes: una de toda la zona estudiada y otra en detalle del molino y sus engranajes. Para realizar todo lo aquí descrito se trabajó con un equipo multidisciplinar que permitió el estudio y reconstrucción adecuados. Historiadores, arqueólogas e ingenieros colaboraron para obtener este resultado haciendo posible, de una manera inclusiva, no solo su correcta divulgación, sino una precisa documentación. Gracias a todo el trabajo descrito en este artículo, el molino hidráulico hallado en Caravaca de la Cruz podrá ser conocido, investigado y valorado.We would like to thank Professor Dr. Robert Spain and the archaeologists in charge of the archaeological site,, María Belén Sánchez González and Juana María Marín Muñoz, for everything. The authors are grateful to Prof Spain, Sánchez and Marín for providing full details of the evidence prior to publication.García-León, J.; González-García, JÁ.; Collado-Espejo, PE. (2021). Documentation and modelling of a hypothetical reconstruction of the first Roman WaterMill in Hispania. Virtual Archaeology Review. 12(25):114-123. https://doi.org/10.4995/var.2021.15316OJS1141231225Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16-33. https://doi.org/10.4995/var.2020.12416Brun, J. P., & Borreani, M. (1998). Deux moulins hydrauliques du Haut-Empire romain en Narbonnaisevillae des Mesclans à La Crau et de Saint-Pierre/ Les Laurons aux Ares. Archéologie de la France antique, 55, 279-326.Champion, E., & Rahaman, H. (2020). Survey of 3D digital heritage repositories and platforms. Virtual Archaeology Review, 11(23), 1-15. https://doi.org/10.4995/var.2020.13226Cunliffe, B., & Galliou, P. (2002). The Le Yaudet Project, Twelfth Interim Report on the excavations 2002. Institute of Archaeology, University of Oxford and Centre de Recherche Bretonne et Celtique, University of Brest (France).De Felice, G. (2016). Cathedrals in the Desert: A Review of Edoardo Tresoldi's Installation at Siponto, Italy. Public Archaeology, 15, 59-61. https://doi.org/10.1080/14655187.2016.1209634Fassi, F., Achile, C., & Fregonese, L. (2011) Surveying and modelling the main spire of Milan Cathedral using multiple data sources. The Photogrammetry Record, 26(136), 462-487. https://doi.org/10.1111/j.1477-9730.2011.00658.xGarcía-León, J., Sánchez-Allegue, P., Peña-Velasco, C., Cipriani, L., & Fantini, F. (2018). Interactive dissemination of the 3d model of a Baroque altarpiece: a pipeline from digital survey to game engines. SCIRES-it, 8(2), 59-76. http://dx.doi.org/10.2423/i22394303v8n2p59García-Molina, D., González-Merino, R., Rodero-Pérez, J., & Carrasco-Hurtado, B. (2021). 3D documentation for the conservation of historical heritage: the Castle of Priego de Córdoba (Spain). Virtual Archaeology Review, 12(24), 115-130. https://doi.org/10.4995/var.2021.13671Jacono, L. (1938). La routa idraulica di Venafro. L'ingegnere 12-15, 850-853.Leveau, P. (2007). Les moulins de Barbegal 1986-2006. In J. Brun, & J. Fiches (Eds.), Énergie hydraulique et machines élévatrices d'eau dans l'Antiquité (pp. 185-199). Publications du Centre Jean Bérard. https://doi.org/10.4000/books.pcjb.434Naujokat, A., Glitsch, T., Martin, F., & Schlimme, H. (2020). Baureka.online- Reseach repository, catalogue and archive for architectural history and building Archaeology. SCIRES-it, 10(1), 43-52. https://doi.org/10.2423/i22394303v10n1p43Oleson, J. P. (1984). A Roman Water-Mill on the Crocodilion river near Caesarea. Zeitschrift des Deutschen Palästina-Vereins, 100, 137-152.Palomo Palomo, J. & Fernández Uriel, P. (2007). Los molinos hidráulicos en la Antigüedad. Espacio, Tiempo y Forma. Serie II. Historia Antigua, 19-20, 499-524. Madrid: UNED. https://doi.org/10.5944/etfii.19.2006.4465Peña-Velasco, C., García-León, J., & Sánchez Allegue, P. (2017). Documentación, conservación y difusión de un retablo a través de la geomática: el retablo barroco de la iglesia de San Miguel en Murcia. e-rph: Revista electrónica de Patrimonio histórico, 21, 67-90. http://www.revistadepatrimonio.es/revistas/numero21/difusion/estudios/articulo.phpRemondino, F. (2011). Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sensing, 3, 1104-1138. https//doi.org/10.3390/rs3061104Rodríguez-Miranda, A., Valle Melón, J. M., Korro Bañuelos, J., & Elorriaga Aguirre, G. (2021). Interactive Virtual representation of the disappeared convent of El Carmen (Logroño) generated from a paper craft model. Virtual Archeology Review, 12(24),77-89. https://doi.org/10.4995/var.2021.14038Rojas-Sola, J. I., & López-García, R. (2007). Engineering graphics and WaterMills: ancient technology in Spain. Renewable Energy, 32(12), 2019-2033. https//doi.org/10.1016/j.renene.2006.10.013Romeuf, A. (1978). Un moulin à eau gallo-romain aux Martres des Veyre (Puy-de-Dôme»). Revue d'Auvergne, 92(2), 23-41.Sánchez González, M. B., Marín Muñoz, J. M., Sánchez González, M. J., García López, A. I., & Brotóns Yagüe, F. (2020). El molino hidráulico romano y otros hallazgos arqueológicos en Hoya de los Molinos de Caravaca de la Cruz (Murcia). Avance preliminar. XXVI Jornadas de Patrimonio Cultural de la Región de Murcia. Murcia. Tres Fronteras Ediciones, 33-44. http://hdl.handle.net/10317/8809Santoni, A., Martín-Talaverano, R., Quattrini, R., & Murillo-Fragero, J. (2021). HBIM approach to implement the historical and constructive knowledge. The case of the Real Colegiata of San Isidoro (León, Spain). Virtual Archaeology Review, 12(24), 49-65. doi:https://doi.org/10.4995/var.2021.13661Small, A., & Buck, R. (1994). The excavations of San Giovanni di Ruoti I. The villas and their environment. Toronto: R.O.M. https://doi.org/10.3138/9781442681217-010Spain, R. (2008). The power in performance of Roman Water-Mills. Hydro-mechanical analysis of vertical-wheeled Water-Mills. BAR International Series 1786. Oxford: John and Erica Hedges. https://doi.org/10.30861/9781407302171Wikander, Ö. (1979). Water Mills in Ancient Rome. Opuscula Romana 12, 13-36.Wikander, Ö. (1984). Exploitation of Water-power or technological stagnation? A reappraisal of the productive forces in the Roman Empire. Lund, Studier utgivna av Kungl. Humanistiska Vetenskapssamfundet i Lund.Wikander, Ö. (1985). Archeological evidence for early Water-Mills. An interim report. History of Technology, 10, 151-179.Wilson, A.(2000).The Water-Mills on the Janiculum. Memoirs of the American Academy at Rome 45, 219-246. https://doi.org/10.2307/4238771Wilson, A. (2002). Machines, power and the ancient economy. Journal of Roman Studies, 92,1-32. https://doi.org/10.2307/3184857Yastikli, N. (2007). Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal Cultural Heritage, 8(4), 432-427. https://doi.org/10.1016/j.culher.2007.06.00

Roberto Revelli - One of the best experts on this subject based on the ideXlab platform.

  • Functional Analysis of Piedmont (Italy) Ancient Water Mills Aimed at Their Recovery or Reconversion
    'MDPI AG', 2019
    Co-Authors: Walter Franco, Carlo Ferraresi, Roberto Revelli
    Abstract:

    Since ancient times and for hundreds of years, grain Mills, hammers, sawMills, spinning Mills, and hemp rollers have been powered by Water wheels. In the nineteenth century there were hundreds of thousands of Mills in all of Europe. It is an enormous historical and cultural heritage of inestimable value, which is for the most part, abandoned today. Recently, there is a renewed interest in their reuse, both for their widespread diffusion in the territory and for the excellent environmental integration and intrinsic sustainability. Even when, for economic reasons, their recovery for the original tasks is not suitable, the conversion into mini plants for the production of electricity can be advantageous. In the paper, analyzing some typical examples of the old Water Mill of the Piemonte region, in North-West of Italy, the mechanical architecture of old Water Mill, from Water wheels to Millstones, is described and the functional details of various mechanisms are provided. In fact, by knowing only the specifics of the ancient Mills, it is possible to enhance their potential and restore them from the perspective of a renewed high quality production, or reconvert them in mini-plants for the production of electricity

Colin Rynne - One of the best experts on this subject based on the ideXlab platform.

  • Water power as a factor of industrial location in early medieval ireland the environment of the early irish Water Mill
    Industrial Archaeology Review, 2009
    Co-Authors: Colin Rynne
    Abstract:

    AbstractIt has long been known that certain Water-powered Mill sites, owing to the suitability of their Water supply, have continued in use since the later medieval period. But when, exactly, did medieval Millwrights begin to make empirical observations on the efficacy of a particular source of hydro-power and, indeed, on the very site of the Mill itself? In the present paper, important new archaeological evidence from early medieval Ireland (c. AD 600–1100), is used to demonstrate that conscious decisions on the location of Mills employing various types of freshWater and estuarine supplies were already being made by the early decades of the 7th century AD. Furthermore, not only were increasingly more challenging locations being adapted for use by early medieval Irish Millwrights, but the availability of Water-power had already become an important factor in the choice of site for larger monasteries.

García-león Josefina - One of the best experts on this subject based on the ideXlab platform.

  • Documentación y modelización de una hipótesis de reconstrucción del primer molino hidráulico romano de la península ibérica
    'Universitat Politecnica de Valencia', 2021
    Co-Authors: García-león Josefina, González-garcía, Jesús Á., Collado-espejo, Pedro E.
    Abstract:

    [EN] The accurate graphic survey of an archaeological site is fundamental for its analysis and research. Furthermore, if this site is to be covered by a building and will not be accessible or visible, its documentation is essential, not only to continue with the research, but also to disseminate and enhance the discoveries. An example of this is the "Hoya de los Molinos" archaeological site in Caravaca de la Cruz (Region of Murcia, Spain). This is where the first mark of the wheel of a Roman vertical WaterMill in the Iberian Peninsula has been found. This fact is crucial because remains of Roman vertical-wheeled WaterMills have been found across the Mediterranean but not in the Iberian Peninsula. Moreover, the fact that this WaterMill still has all its structural elements makes this archaeological site in Caravaca de la Cruz very interesting. Due to these facts, it is essential to disseminate this discovery, so that it can be recognized and considered as archaeological and cultural heritage. To that end, the researchers have carried out a three-dimensional (3D) reconstruction of the most characteristic elements, such as the vertical wheel, the gears that allowed grinding the grain, and the building protecting them. A virtual recreation was carried out, based on the historical and building research, which is displayed in an explanatory video. Furthermore, two reproductions were created: one made to scale of the archaeological site with a 3D printer and another one of the hypothetical structure of the Roman WaterMill. To achieve this result, historians, archaeologists and engineers have collaborated, thus enabling not only its adequate dissemination, but also its accurate documentation, in an inclusive manner. Thanks to all the work that this paper describes, the Roman WaterMill found in Caravaca de la Cruz can be known, studied and assessed.[ES] La documentación gráfica y precisa de un yacimiento arqueológico es fundamental para su posterior estudio e investigación. Cuando el yacimiento quede en el subsuelo de un edificio y no sea accessible ni visitable, dicha documentación es imprescindible, no solo para la continuación de la investigación, sino también para poner en valor los hallazgos encontrados. Un ejemplo de ello es el yacimiento arqueológico de “Hoya de los Molinos” en Caravaca de la Cruz (Región de Murcia, España). En la Península Ibérica se ha encontrado la primera impronta de la rueda de un molino vertical hidráulico de época romana. Este hecho es fundamental por dos razones: la primera es que los molinos hidráulicos fueron utilizados por los romanos, no por los árabes como se creyó durante mucho tiempo (hecho que se ha rebatido gracias a los hallazgos arqueológicos); la segunda es que se encontraron restos de molinos hidráulicos en todo el Mediterrráneo, pero no en la Península ibérica. Además, en el yacimiento se hallaron todos los elementos estructurales del molino hidráulico vertical, lo que hace tan interesante este hallazgo. Por los condicionantes descritos es fundamental divulgar el hallazgo para que sea valorado y conocido. Para ello se realizó una reconstrucción tridimensional (3D) de los elementos más característicos, como son la rueda vertical, los engranajes que permitían la molienda de grano y el edificio que los protegía. A tal efecto, se desarrolló una hipotética recreación virtual y se animó en un video explicativo. También se hicieron dos impresiones 3D a escalas diferentes: una de toda la zona estudiada y otra en detalle del molino y sus engranajes. Para realizar todo lo aquí descrito se trabajó con un equipo multidisciplinar que permitió el estudio y reconstrucción adecuados. Historiadores, arqueólogas e ingenieros colaboraron para obtener este resultado haciendo posible, de una manera inclusiva, no solo su correcta divulgación, sino una precisa documentación. Gracias a todo el trabajo descrito en este artículo, el molino hidráulico hallado en Caravaca de la Cruz podrá ser conocido, investigado y valorado.We would like to thank Professor Dr. Robert Spain and the archaeologists in charge of the archaeological site,, María Belén Sánchez González and Juana María Marín Muñoz, for everything. The authors are grateful to Prof Spain, Sánchez and Marín for providing full details of the evidence prior to publication.García-León, J.; González-García, JÁ.; Collado-Espejo, PE. (2021). Documentation and modelling of a hypothetical reconstruction of the first Roman WaterMill in Hispania. Virtual Archaeology Review. 12(25):114-123. https://doi.org/10.4995/var.2021.15316OJS1141231225Banfi, F. (2020). HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeology Review, 11(23), 16-33. https://doi.org/10.4995/var.2020.12416Brun, J. P., & Borreani, M. (1998). Deux moulins hydrauliques du Haut-Empire romain en Narbonnaisevillae des Mesclans à La Crau et de Saint-Pierre/ Les Laurons aux Ares. Archéologie de la France antique, 55, 279-326.Champion, E., & Rahaman, H. (2020). Survey of 3D digital heritage repositories and platforms. Virtual Archaeology Review, 11(23), 1-15. https://doi.org/10.4995/var.2020.13226Cunliffe, B., & Galliou, P. (2002). The Le Yaudet Project, Twelfth Interim Report on the excavations 2002. Institute of Archaeology, University of Oxford and Centre de Recherche Bretonne et Celtique, University of Brest (France).De Felice, G. (2016). Cathedrals in the Desert: A Review of Edoardo Tresoldi's Installation at Siponto, Italy. Public Archaeology, 15, 59-61. https://doi.org/10.1080/14655187.2016.1209634Fassi, F., Achile, C., & Fregonese, L. (2011) Surveying and modelling the main spire of Milan Cathedral using multiple data sources. The Photogrammetry Record, 26(136), 462-487. https://doi.org/10.1111/j.1477-9730.2011.00658.xGarcía-León, J., Sánchez-Allegue, P., Peña-Velasco, C., Cipriani, L., & Fantini, F. (2018). Interactive dissemination of the 3d model of a Baroque altarpiece: a pipeline from digital survey to game engines. SCIRES-it, 8(2), 59-76. http://dx.doi.org/10.2423/i22394303v8n2p59García-Molina, D., González-Merino, R., Rodero-Pérez, J., & Carrasco-Hurtado, B. (2021). 3D documentation for the conservation of historical heritage: the Castle of Priego de Córdoba (Spain). Virtual Archaeology Review, 12(24), 115-130. https://doi.org/10.4995/var.2021.13671Jacono, L. (1938). La routa idraulica di Venafro. L'ingegnere 12-15, 850-853.Leveau, P. (2007). Les moulins de Barbegal 1986-2006. In J. Brun, & J. Fiches (Eds.), Énergie hydraulique et machines élévatrices d'eau dans l'Antiquité (pp. 185-199). Publications du Centre Jean Bérard. https://doi.org/10.4000/books.pcjb.434Naujokat, A., Glitsch, T., Martin, F., & Schlimme, H. (2020). Baureka.online- Reseach repository, catalogue and archive for architectural history and building Archaeology. SCIRES-it, 10(1), 43-52. https://doi.org/10.2423/i22394303v10n1p43Oleson, J. P. (1984). A Roman Water-Mill on the Crocodilion river near Caesarea. Zeitschrift des Deutschen Palästina-Vereins, 100, 137-152.Palomo Palomo, J. & Fernández Uriel, P. (2007). Los molinos hidráulicos en la Antigüedad. Espacio, Tiempo y Forma. Serie II. Historia Antigua, 19-20, 499-524. Madrid: UNED. https://doi.org/10.5944/etfii.19.2006.4465Peña-Velasco, C., García-León, J., & Sánchez Allegue, P. (2017). Documentación, conservación y difusión de un retablo a través de la geomática: el retablo barroco de la iglesia de San Miguel en Murcia. e-rph: Revista electrónica de Patrimonio histórico, 21, 67-90. http://www.revistadepatrimonio.es/revistas/numero21/difusion/estudios/articulo.phpRemondino, F. (2011). Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sensing, 3, 1104-1138. https//doi.org/10.3390/rs3061104Rodríguez-Miranda, A., Valle Melón, J. M., Korro Bañuelos, J., & Elorriaga Aguirre, G. (2021). Interactive Virtual representation of the disappeared convent of El Carmen (Logroño) generated from a paper craft model. Virtual Archeology Review, 12(24),77-89. https://doi.org/10.4995/var.2021.14038Rojas-Sola, J. I., & López-García, R. (2007). Engineering graphics and WaterMills: ancient technology in Spain. Renewable Energy, 32(12), 2019-2033. https//doi.org/10.1016/j.renene.2006.10.013Romeuf, A. (1978). Un moulin à eau gallo-romain aux Martres des Veyre (Puy-de-Dôme»). Revue d'Auvergne, 92(2), 23-41.Sánchez González, M. B., Marín Muñoz, J. M., Sánchez González, M. J., García López, A. I., & Brotóns Yagüe, F. (2020). El molino hidráulico romano y otros hallazgos arqueológicos en Hoya de los Molinos de Caravaca de la Cruz (Murcia). Avance preliminar. XXVI Jornadas de Patrimonio Cultural de la Región de Murcia. Murcia. Tres Fronteras Ediciones, 33-44. http://hdl.handle.net/10317/8809Santoni, A., Martín-Talaverano, R., Quattrini, R., & Murillo-Fragero, J. (2021). HBIM approach to implement the historical and constructive knowledge. The case of the Real Colegiata of San Isidoro (León, Spain). Virtual Archaeology Review, 12(24), 49-65. doi:https://doi.org/10.4995/var.2021.13661Small, A., & Buck, R. (1994). The excavations of San Giovanni di Ruoti I. The villas and their environment. Toronto: R.O.M. https://doi.org/10.3138/9781442681217-010Spain, R. (2008). The power in performance of Roman Water-Mills. Hydro-mechanical analysis of vertical-wheeled Water-Mills. BAR International Series 1786. Oxford: John and Erica Hedges. https://doi.org/10.30861/9781407302171Wikander, Ö. (1979). Water Mills in Ancient Rome. Opuscula Romana 12, 13-36.Wikander, Ö. (1984). Exploitation of Water-power or technological stagnation? A reappraisal of the productive forces in the Roman Empire. Lund, Studier utgivna av Kungl. Humanistiska Vetenskapssamfundet i Lund.Wikander, Ö. (1985). Archeological evidence for early Water-Mills. An interim report. History of Technology, 10, 151-179.Wilson, A.(2000).The Water-Mills on the Janiculum. Memoirs of the American Academy at Rome 45, 219-246. https://doi.org/10.2307/4238771Wilson, A. (2002). Machines, power and the ancient economy. Journal of Roman Studies, 92,1-32. https://doi.org/10.2307/3184857Yastikli, N. (2007). Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal Cultural Heritage, 8(4), 432-427. https://doi.org/10.1016/j.culher.2007.06.00