Winged-Helix Transcription Factors

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 39 Experts worldwide ranked by ideXlab platform

Darryl C Zeldin - One of the best experts on this subject based on the ideXlab platform.

  • graded phenotypic response to partial and complete deficiency of a brain specific transcript variant of the winged helix Transcription factor rfx4
    Development, 2003
    Co-Authors: Perry J Blackshear, Joan P Graves, Deborah J Stumpo, Inma Cobos, John L R Rubenstein, Darryl C Zeldin
    Abstract:

    One line of mice harboring a cardiac-specific epoxygenase transgene developed head swelling and rapid neurological decline in young adulthood, and had marked hydrocephalus of the lateral and third ventricles. The transgene was found to be inserted into an intron in the mouse Rfx4 locus. This insertion apparently prevented expression of a novel variant transcript of RFX4 (RFX4_v3), a member of the regulatory factor X family of winged helix Transcription Factors. Interruption of two alleles resulted in profound failure of dorsal midline brain structure formation and perinatal death, presumably by interfering with expression of downstream genes. Interruption of a single allele prevented formation of the subcommissural organ, a structure important for cerebrospinal fluid flow through the aqueduct of Sylvius, and resulted in congenital hydrocephalus. These data implicate the RFX4_v3 variant transcript as being crucial for early brain development, as well as for the genesis of the subcommissural organ. These findings may be relevant to human congenital hydrocephalus, a birth defect that affects approximately 0.6 per 1000 newborns.

Brigid L M Hogan - One of the best experts on this subject based on the ideXlab platform.

  • the murine winged helix Transcription Factors foxc1 and foxc2 are both required for cardiovascular development and somitogenesis
    Genes & Development, 2001
    Co-Authors: Tsutomu Kume, Haiyan Jiang, Jolanta M Topczewska, Brigid L M Hogan
    Abstract:

    The murine Foxc1/Mf1 and Foxc2/Mfh1 genes encode closely related forkhead/winged helix Transcription Factors with overlapping expression in the forming somites and head mesoderm and endothelial and mesenchymal cells of the developing heart and blood vessels. Embryos lacking either Foxc1 or Foxc2, and most compound heterozygotes, die pre- or perinatally with similar abnormal phenotypes, including defects in the axial skeleton and cardiovascular system. However, somites and major blood vessels do form. This suggested that the genes have similar, dose-dependent functions, and compensate for each other in the early development of the heart, blood vessels, and somites. In support of this hypothesis, we show here that compound Foxc1; Foxc2 homozygotes die earlier and with much more severe defects than single homozygotes alone. Significantly, they have profound abnormalities in the first and second branchial arches, and the early remodeling of blood vessels. Moreover, they show a complete absence of segmented paraxial mesoderm, including anterior somites. Analysis of compound homozygotes shows that Foxc1 and Foxc2 are both required for Transcription in the anterior presomitic mesoderm of paraxis, Mesp1, Mesp2, Hes5, and Notch1, and for the formation of sharp boundaries of Dll1, Lfng, and ephrinB2 expression. We propose that the two genes interact with the Notch signaling pathway and are required for the prepatterning of anterior and posterior domains in the presumptive somites through a putative Notch/Delta/Mesp regulatory loop.

  • murine forkhead winged helix genes foxc1 mf1 and foxc2 mfh1 are required for the early organogenesis of the kidney and urinary tract
    Development, 2000
    Co-Authors: Tsutomu Kume, Keyu Deng, Brigid L M Hogan
    Abstract:

    The murine genes, Foxc1 and Foxc2 (previously, Mf1 and Mfh1), encode forkhead/winged helix Transcription Factors with virtually identical DNA-binding domains and overlapping expression patterns in various embryonic tissues. Foxc1/Mf1 is disrupted in the mutant, congenital hydrocephalus (Foxc1/Mf1(ch)), which has multiple developmental defects. We show here that, depending on the genetic background, most Foxc1 homozygous mutants are born with abnormalities of the metanephric kidney, including duplex kidneys and double ureters, one of which is a hydroureter. Analysis of embryos reveals that Foxc1 homozygotes have ectopic mesonephric tubules and ectopic anterior ureteric buds. Moreover, expression in the intermediate mesoderm of Glial cell-derived neurotrophic factor (Gdnf), a primary inducer of the ureteric bud, is expanded more anteriorly in Foxc1 homozygous mutants compared with wild type. These findings support the hypothesis of Mackie and Stephens concerning the etiology of duplex kidney and hydroureter in human infants with congenital kidney abnormalities (Mackie, G. G. and Stephens, F. G. (1975) J. Urol. 114, 274–280). Previous studies established that most Foxc1(lacZ)Foxc2(tm1) compound heterozygotes have the same spectrum of cardiovascular defects as single homozygous null mutants, demonstrating interaction between the two genes in the cardiovascular system. Here, we show that most compound heterozygotes have hypoplastic kidneys and a single hydroureter, while all heterozygotes are normal. This provides evidence that the two genes interact in kidney as well as heart development.

Tsutomu Kume - One of the best experts on this subject based on the ideXlab platform.

  • the murine winged helix Transcription Factors foxc1 and foxc2 are both required for cardiovascular development and somitogenesis
    Genes & Development, 2001
    Co-Authors: Tsutomu Kume, Haiyan Jiang, Jolanta M Topczewska, Brigid L M Hogan
    Abstract:

    The murine Foxc1/Mf1 and Foxc2/Mfh1 genes encode closely related forkhead/winged helix Transcription Factors with overlapping expression in the forming somites and head mesoderm and endothelial and mesenchymal cells of the developing heart and blood vessels. Embryos lacking either Foxc1 or Foxc2, and most compound heterozygotes, die pre- or perinatally with similar abnormal phenotypes, including defects in the axial skeleton and cardiovascular system. However, somites and major blood vessels do form. This suggested that the genes have similar, dose-dependent functions, and compensate for each other in the early development of the heart, blood vessels, and somites. In support of this hypothesis, we show here that compound Foxc1; Foxc2 homozygotes die earlier and with much more severe defects than single homozygotes alone. Significantly, they have profound abnormalities in the first and second branchial arches, and the early remodeling of blood vessels. Moreover, they show a complete absence of segmented paraxial mesoderm, including anterior somites. Analysis of compound homozygotes shows that Foxc1 and Foxc2 are both required for Transcription in the anterior presomitic mesoderm of paraxis, Mesp1, Mesp2, Hes5, and Notch1, and for the formation of sharp boundaries of Dll1, Lfng, and ephrinB2 expression. We propose that the two genes interact with the Notch signaling pathway and are required for the prepatterning of anterior and posterior domains in the presumptive somites through a putative Notch/Delta/Mesp regulatory loop.

  • murine forkhead winged helix genes foxc1 mf1 and foxc2 mfh1 are required for the early organogenesis of the kidney and urinary tract
    Development, 2000
    Co-Authors: Tsutomu Kume, Keyu Deng, Brigid L M Hogan
    Abstract:

    The murine genes, Foxc1 and Foxc2 (previously, Mf1 and Mfh1), encode forkhead/winged helix Transcription Factors with virtually identical DNA-binding domains and overlapping expression patterns in various embryonic tissues. Foxc1/Mf1 is disrupted in the mutant, congenital hydrocephalus (Foxc1/Mf1(ch)), which has multiple developmental defects. We show here that, depending on the genetic background, most Foxc1 homozygous mutants are born with abnormalities of the metanephric kidney, including duplex kidneys and double ureters, one of which is a hydroureter. Analysis of embryos reveals that Foxc1 homozygotes have ectopic mesonephric tubules and ectopic anterior ureteric buds. Moreover, expression in the intermediate mesoderm of Glial cell-derived neurotrophic factor (Gdnf), a primary inducer of the ureteric bud, is expanded more anteriorly in Foxc1 homozygous mutants compared with wild type. These findings support the hypothesis of Mackie and Stephens concerning the etiology of duplex kidney and hydroureter in human infants with congenital kidney abnormalities (Mackie, G. G. and Stephens, F. G. (1975) J. Urol. 114, 274–280). Previous studies established that most Foxc1(lacZ)Foxc2(tm1) compound heterozygotes have the same spectrum of cardiovascular defects as single homozygous null mutants, demonstrating interaction between the two genes in the cardiovascular system. Here, we show that most compound heterozygotes have hypoplastic kidneys and a single hydroureter, while all heterozygotes are normal. This provides evidence that the two genes interact in kidney as well as heart development.

Perry J Blackshear - One of the best experts on this subject based on the ideXlab platform.

  • graded phenotypic response to partial and complete deficiency of a brain specific transcript variant of the winged helix Transcription factor rfx4
    Development, 2003
    Co-Authors: Perry J Blackshear, Joan P Graves, Deborah J Stumpo, Inma Cobos, John L R Rubenstein, Darryl C Zeldin
    Abstract:

    One line of mice harboring a cardiac-specific epoxygenase transgene developed head swelling and rapid neurological decline in young adulthood, and had marked hydrocephalus of the lateral and third ventricles. The transgene was found to be inserted into an intron in the mouse Rfx4 locus. This insertion apparently prevented expression of a novel variant transcript of RFX4 (RFX4_v3), a member of the regulatory factor X family of winged helix Transcription Factors. Interruption of two alleles resulted in profound failure of dorsal midline brain structure formation and perinatal death, presumably by interfering with expression of downstream genes. Interruption of a single allele prevented formation of the subcommissural organ, a structure important for cerebrospinal fluid flow through the aqueduct of Sylvius, and resulted in congenital hydrocephalus. These data implicate the RFX4_v3 variant transcript as being crucial for early brain development, as well as for the genesis of the subcommissural organ. These findings may be relevant to human congenital hydrocephalus, a birth defect that affects approximately 0.6 per 1000 newborns.

Deborah J Stumpo - One of the best experts on this subject based on the ideXlab platform.

  • graded phenotypic response to partial and complete deficiency of a brain specific transcript variant of the winged helix Transcription factor rfx4
    Development, 2003
    Co-Authors: Perry J Blackshear, Joan P Graves, Deborah J Stumpo, Inma Cobos, John L R Rubenstein, Darryl C Zeldin
    Abstract:

    One line of mice harboring a cardiac-specific epoxygenase transgene developed head swelling and rapid neurological decline in young adulthood, and had marked hydrocephalus of the lateral and third ventricles. The transgene was found to be inserted into an intron in the mouse Rfx4 locus. This insertion apparently prevented expression of a novel variant transcript of RFX4 (RFX4_v3), a member of the regulatory factor X family of winged helix Transcription Factors. Interruption of two alleles resulted in profound failure of dorsal midline brain structure formation and perinatal death, presumably by interfering with expression of downstream genes. Interruption of a single allele prevented formation of the subcommissural organ, a structure important for cerebrospinal fluid flow through the aqueduct of Sylvius, and resulted in congenital hydrocephalus. These data implicate the RFX4_v3 variant transcript as being crucial for early brain development, as well as for the genesis of the subcommissural organ. These findings may be relevant to human congenital hydrocephalus, a birth defect that affects approximately 0.6 per 1000 newborns.