Wnt1 Protein

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 111 Experts worldwide ranked by ideXlab platform

Fabian J Theis - One of the best experts on this subject based on the ideXlab platform.

  • Sharpening of expression domains induced by transcription and microRNA regulationwithin a spatio-temporal model of mid-hindbrain boundary formation
    BMC Systems Biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Wittmann, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Fabian J Theis
    Abstract:

    Background The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1 gene expression in this context. Results We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process . Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain of Wnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1 miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. Conclusion In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additional Wnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.

  • Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation.
    BMC systems biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Dominik M. Wittmann, Fabian J Theis
    Abstract:

    The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1gene expression in this context. We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process. Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain ofWnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additionalWnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.

Dipali Sharma - One of the best experts on this subject based on the ideXlab platform.

  • leptin induced epithelial mesenchymal transition in breast cancer cells requires β catenin activation via akt gsk3 and mta1 Wnt1 Protein dependent pathways
    Journal of Biological Chemistry, 2012
    Co-Authors: Dan Yan, Dimiter Avtanski, Neeraj K Saxena, Dipali Sharma
    Abstract:

    Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated Protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.

  • Leptin-induced Epithelial-Mesenchymal Transition in Breast Cancer Cells Requires β-Catenin Activation via Akt/GSK3- and MTA1/Wnt1 Protein-dependent Pathways
    The Journal of biological chemistry, 2012
    Co-Authors: Dan Yan, Dimiter Avtanski, Neeraj K Saxena, Dipali Sharma
    Abstract:

    Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated Protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.

Sabrina Hock - One of the best experts on this subject based on the ideXlab platform.

  • Sharpening of expression domains induced by transcription and microRNA regulationwithin a spatio-temporal model of mid-hindbrain boundary formation
    BMC Systems Biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Wittmann, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Fabian J Theis
    Abstract:

    Background The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1 gene expression in this context. Results We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process . Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain of Wnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1 miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. Conclusion In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additional Wnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.

  • Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation.
    BMC systems biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Dominik M. Wittmann, Fabian J Theis
    Abstract:

    The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1gene expression in this context. We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process. Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain ofWnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additionalWnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.

Dan Yan - One of the best experts on this subject based on the ideXlab platform.

  • leptin induced epithelial mesenchymal transition in breast cancer cells requires β catenin activation via akt gsk3 and mta1 Wnt1 Protein dependent pathways
    Journal of Biological Chemistry, 2012
    Co-Authors: Dan Yan, Dimiter Avtanski, Neeraj K Saxena, Dipali Sharma
    Abstract:

    Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated Protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.

  • Leptin-induced Epithelial-Mesenchymal Transition in Breast Cancer Cells Requires β-Catenin Activation via Akt/GSK3- and MTA1/Wnt1 Protein-dependent Pathways
    The Journal of biological chemistry, 2012
    Co-Authors: Dan Yan, Dimiter Avtanski, Neeraj K Saxena, Dipali Sharma
    Abstract:

    Perturbations in the adipocytokine profile, especially higher levels of leptin, are a major cause of breast tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether leptin is involved in epithelial-mesenchymal transition (EMT). Here, we provide molecular evidence that leptin induces breast cancer cells to undergo a transition from epithelial to spindle-like mesenchymal morphology. Investigating the downstream mediator(s) that may direct leptin-induced EMT, we found functional interactions between leptin, metastasis-associated Protein 1 (MTA1), and Wnt1 signaling components. Leptin increases accumulation and nuclear translocation of β-catenin leading to increased promoter recruitment. Silencing of β-catenin or treatment with the small molecule inhibitor, ICG-001, inhibits leptin-induced EMT, invasion, and tumorsphere formation. Mechanistically, leptin stimulates phosphorylation of glycogen synthase kinase 3β (GSK3β) via Akt activation resulting in a substantial decrease in the formation of the GSK3β-LKB1-Axin complex that leads to increased accumulation of β-catenin. Leptin treatment also increases Wnt1 expression that contributes to GSK3β phosphorylation. Inhibition of Wnt1 abrogates leptin-stimulated GSK3β phosphorylation. We also discovered that leptin increases the expression of an important modifier of Wnt1 signaling, MTA1, which is integral to leptin-mediated regulation of the Wnt/β-catenin pathway as silencing of MTA1 inhibits leptin-induced Wnt1 expression, GSK3β phosphorylation, and β-catenin activation. Furthermore, analysis of leptin-treated breast tumors shows increased expression of Wnt1, pGSK3β, and vimentin along with higher nuclear accumulation of β-catenin and reduced E-cadherin expression providing in vivo evidence for a previously unrecognized cross-talk between leptin and MTA1/Wnt signaling in epithelial-mesenchymal transition of breast cancer cells.

Nilima Prakash - One of the best experts on this subject based on the ideXlab platform.

  • Sharpening of expression domains induced by transcription and microRNA regulationwithin a spatio-temporal model of mid-hindbrain boundary formation
    BMC Systems Biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Wittmann, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Fabian J Theis
    Abstract:

    Background The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1 gene expression in this context. Results We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process . Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain of Wnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1 miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. Conclusion In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additional Wnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.

  • Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation.
    BMC systems biology, 2013
    Co-Authors: Sabrina Hock, Jan Hasenauer, Dominik Lutter, Dietrich Trümbach, Wolfgang Wurst, Nilima Prakash, Dominik M. Wittmann, Fabian J Theis
    Abstract:

    The establishment of the mid-hindbrain region in vertebrates is mediated by theisthmic organizer, an embryonic secondary organizer characterized by awell-defined pattern of locally restricted gene expression domains with sharplydelimited boundaries. While the function of the isthmic organizer at themid-hindbrain boundary has been subject to extensive experimental studies, itremains unclear how this well-defined spatial gene expression pattern, which isessential for proper isthmic organizer function, is established during vertebratedevelopment. Because the secreted Wnt1 Protein plays a prominent role in isthmicorganizer function, we focused in particular on the refinement of Wnt1gene expression in this context. We analyzed the dynamics of the corresponding murine gene regulatory network andthe related, diffusive signaling Proteins using a macroscopic model for thebiological two-scale signaling process. Despite the discontinuity arisingfrom the sharp gene expression domain boundaries, we proved the existence ofunique, positive solutions for the partial differential equation system. Thisenabled the numerically and analytically analysis of the formation and stabilityof the expression pattern. Notably, the calculated expression domain ofWnt1 has no sharp boundary in contrast to experimental evidence. Wesubsequently propose a post-transcriptional regulatory mechanism for Wnt1miRNAs which yields the observed sharp expression domain boundaries. Weestablished a list of candidate miRNAs and confirmed their expression pattern byradioactive in situ hybridization. The miRNA miR-709 was identified as apotential regulator of Wnt1 mRNA, which was validated by luciferasesensor assays. In summary, our theoretical analysis of the gene expression pattern induction atthe mid-hindbrain boundary revealed the need to extend the model by an additionalWnt1 regulation. The developed macroscopic model of a two-scaleprocess facilitate the stringent analysis of other morphogen-based patterningprocesses.