Write-Off

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3078897 Experts worldwide ranked by ideXlab platform

Dong Ick Son - One of the best experts on this subject based on the ideXlab platform.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

Wontae Kim - One of the best experts on this subject based on the ideXlab platform.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

Tae Whan Kim - One of the best experts on this subject based on the ideXlab platform.

  • memory stabilities and mechanisms of organic bistable devices with a phase separated poly methylmethacrylate poly 3 hexylthiophene hybrid layer
    Organic Electronics, 2012
    Co-Authors: Woo Seung Song, Hee Yeon Yang, Chan Ho Yoo, Dong Yeol Yun, Tae Whan Kim
    Abstract:

    Abstract Organic bistable devices (OBDs) with a poly(methylmethacrylate) (PMMA)/poly(3-hexylthiophene) (P3HT) hybrid layer, acting as a charge storage region, formed by using a vertical phase self-separation method were fabricated. The current–voltage curves of the Al/P3HT/PMMA/indium-tin-oxide devices exhibited current bistabilities with a maximum ON/OFF ratio of 1 × 104. The write-read-erase-read sequence results demonstrated the switching characteristics of the OBDs. The cycling endurance number of the ON/OFF switching for the OBD was above 1 × 105. The memory characteristics of the OBDs were attributed to trapping and detrapping processes of electrons into and out of the P3HT/PMMA heterointerfaces.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

Jae Hun Jung - One of the best experts on this subject based on the ideXlab platform.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

  • current bistability and carrier transport mechanisms of organic bistable devices based on hybrid ag nanoparticle polymethyl methacrylate polymer nanocomposites
    Applied Physics Letters, 2010
    Co-Authors: Wontae Kim, Jae Hun Jung, Tae Whan Kim, Dong Ick Son
    Abstract:

    The current bistability and the carrier transport mechanisms of organic bistable devices (OBDs) using Ag nanoparticle-polymethyl methacrylate (PMMA) nanocomposites have been investigated. Current-voltage measurements at 300 K on the Al/Ag nanoparticles embedded in the PMMA layer/indium-tin-oxide devices exhibit a current bistability with an ON/OFF ratio of 103. Write-read-erase-read sequence results demonstrate the switching characteristics of the OBD. The cycling endurance number of the ON/OFF switching for the OBD is above 7×104. The current bistability and carrier transport mechanisms of the OBD fabricated utilizing hybrid Ag nanoparticle-PMMA polymer nanocomposites are described on the basis of the experimental data.

Taylor K Chapple - One of the best experts on this subject based on the ideXlab platform.