ACADM

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 450 Experts worldwide ranked by ideXlab platform

Brage S. Andresen - One of the best experts on this subject based on the ideXlab platform.

  • a synonymous polymorphic variation in ACADM exon 11 affects splicing efficiency and may affect fatty acid oxidation
    Molecular Genetics and Metabolism, 2013
    Co-Authors: Gitte Hoffmann Bruun, Thomas Koed Doktor, Brage S. Andresen
    Abstract:

    In recent studies combining genome-wide association and tandem-MS based metabolic profiling, a single-nucleotide polymorphism (SNP), rs211718C>T, located far upstream of the MCAD gene (ACADM) was found to be associated with serum concentrations of medium-chain acylcarnitines indicating improved beta-oxidation of medium-chain fatty acids. We examined the functional basis for this association and identified linkage between rs211718 and the intragenic synonymous polymorphic variant c.1161A>G in ACADM exon 11 (rs1061337). Employing minigene studies we show that the c.1161A allele is associated with exon 11 missplicing, and that the c.1161G allele corrects this missplicing. This may result in production of more full length MCAD protein from the c.1161G allele. Our analysis suggests that the improved splicing of the c.1161G allele is due to changes in the relative binding of splicing regulatory proteins SRSF1 and hnRNP A1. Using publicly available pre-aligned RNA-seq data, we find that the ACADM c.1161G allele is expressed at significantly higher levels than the c.1161A allele across different tissues. This supports that c.1161A>G is a functional SNP, which leads to higher MCAD expression, perhaps due to improved splicing. This study is a proof of principle that synonymous SNPs are not neutral. By changing the binding sites for splicing regulatory proteins they can have significant effects on pre-mRNA splicing and thus protein function. In addition, this study shows that for a sequence variation to have an effect, it might need to change the balance in the relative binding of positive and negative splicing factors.

  • a large intragenic deletion in the ACADM gene can cause mcad deficiency but is not detected on routine sequencing
    JIMD Reports, 2013
    Co-Authors: Claire Searle, Jamie Higgs, Deborah Gray, Alison Mills, Elizabeth K Allen, Ed Wraith, Brage S. Andresen, Emma Hobson
    Abstract:

    We report of a family who has three members affected by medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, one of whom sadly died in the neonatal period prior to diagnosis. Routine sequencing, available on a service basis in the UK, identified only a heterozygous mutation in ACADM gene (c.985A>G, p.Lys329Glu) in this family. Linkage analysis suggested a possible intragenic deletion which was confirmed by the use of array-based comparative genomic hybridization (aCGH). This second mutation was a large intragenic deletion encompassing at least exons 1–6 of the ACADM gene. Now that this deletion has been identified, several family members have come forward for carrier testing which was not possible previously. Larger deletions (20bp or more) have only previously been reported twice, but these may be a more frequent cause of MCAD deficiency than hitherto believed, due to fact that these are not anticipated and, therefore, the routine diagnostic techniques used will not identify them. This finding represents a useful learning point in the management of families with MCAD deficiency, and highlights that we should be routinely looking for larger deletions, when only one of the mutations can be identified on standard sequencing.

  • a novel mutation of the ACADM gene c 145c g associated with the common c 985a g mutation on the other ACADM allele causes mild mcad deficiency a case report
    Orphanet Journal of Rare Diseases, 2010
    Co-Authors: Anne-frédérique Dessein, Silvia Napurigouel, Daniel Rabier, Monique Fontaine, Brage S. Andresen, Dries Dobbelaere, Michele Brivet, Niels Gregersen, Karine Mentionmulliez
    Abstract:

    A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.

  • mitochondrial fatty acid oxidation defects remaining challenges
    Journal of Inherited Metabolic Disease, 2008
    Co-Authors: Niels Gregersen, Brage S. Andresen, Thomas J Corydon, Christina Bak Pedersen, Rikke K J Olsen, Peter Bross
    Abstract:

    Mitochondrial fatty acid oxidation defects have been recognized since the early 1970s. The discovery rate has been rather constant, with 3–4 ‘new’ disorders identified every decade and with the most recent example, ACAD9 deficiency, reported in 2007. In this presentation we will focus on three of the ‘old’ defects: medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, riboflavin responsive multiple acyl-CoA dehydrogenation (RR-MAD) deficiency, and short-chain acyl-CoA dehydrogenase (SCAD) deficiency. These disorders have been discussed in many publications and at countless conference presentations, and many questions relating to them have been answered. However, continuing clinical and pathophysiological research has raised many further questions, and new ideas and methodologies may be required to answer these. We will discuss these challenges. For MCAD deficiency the key question is why 80% of symptomatic patients are homozygous for the prevalent ACADM gene variation c.985A > G whereas this is found in only ∼50% of newborns with a positive screen. For RR-MAD deficiency, the challenge is to find the connection between variations in the ETFDH gene and the observed deficiency of a number of different mitochondrial dehydrogenases as well as deficiency of FAD and coenzyme Q10. With SCAD deficiency, the challenge is to elucidate whether ACADS gene variations are disease-associated, especially when combined with other genetic/cellular/environmental factors, which may act synergistically.

  • mutation analysis in mitochondrial fatty acid oxidation defects exemplified by acyl coa dehydrogenase deficiencies with special focus on genotype phenotype relationship
    Human Mutation, 2001
    Co-Authors: Niels Gregersen, Lars Bolund, Brage S. Andresen, Morten J Corydon, Thomas J Corydon, Rikke K J Olsen, Peter Bross
    Abstract:

    Mutation analysis of metabolic disorders, such as the fatty acid oxidation defects, offers an additional, and often superior, tool for specific diagnosis compared to traditional enzymatic assays. With the advancement of the structural part of the Human Genome Project and the creation of mutation databases, procedures for convenient and reliable genetic analyses are being developed. The most straightforward application of mutation analysis is to specific diagnoses in suspected patients, particularly in the context of family studies and for prenatal/preimplantation analysis. In addition, from these practical uses emerges the possibility to study genotype–phenotype relationships and investigate the molecular pathogenesis resulting from specific mutations or groups of mutations. In the present review we summarize current knowledge regarding genotype–phenotype relationships in three disorders of mitochondrial fatty acid oxidation: very-long chain acyl-CoA dehydrogenase (VLCAD, also ACADVL), medium-chain acyl-CoA dehydrogenase (MCAD, also ACADM), and short-chain acyl-CoA dehydrogenase (SCAD, also ACADS) deficiencies. On the basis of this knowledge we discuss current understanding of the structural implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control systems may help to assess the balance between genetic and environmental factors in the clinical expression of a given mutation. The realization that the effect of the monogene, such as disease-causing mutations in the VLCAD, MCAD, and SCAD genes, may be modified by variations in other genes presages the need for profile analyses of additional genetic variations. The rapid development of mutation detection systems, such as the chip technologies, makes such profile analyses feasible. However, it remains to be seen to what extent mutation analysis will be used for diagnosis of fatty acid oxidation defects and other metabolic disorders. Hum Mutat 18:169–189, 2001. © 2001 Wiley-Liss, Inc.

Jerry Vockley - One of the best experts on this subject based on the ideXlab platform.

  • An acyl-CoA dehydrogenase microplate activity assay using recombinant porcine electron transfer flavoprotein.
    Analytical Biochemistry, 2019
    Co-Authors: Yuxun Zhang, Alwalid Mohsen, Jerry Vockley, Catherine Kochersperger, Keaton Solo, Alexandra V. Schmidt, Eric S. Goetzman
    Abstract:

    Abstract Acyl-CoA dehydrogenases (ACADs) play key roles in the mitochondrial catabolism of fatty acids and branched-chain amino acids. All nine characterized ACAD enzymes use electron transfer flavoprotein (ETF) as their redox partner. The gold standard for measuring ACAD activity is the anaerobic ETF fluorescence reduction assay, which follows the decrease of pig ETF fluorescence as it accepts electrons from an ACAD in vitro . Although first described 35 years ago, the assay has not been widely used due to the need to maintain an anaerobic assay environment and to purify ETF from pig liver mitochondria. Here, we present a method for expressing recombinant pig ETF in E coli and purifying it to homogeneity . The recombinant protein is virtually pure after one chromatography step, bears higher intrinsic fluorescence than the native enzyme, and provides enhanced activity in the ETF fluorescence reduction assay. Finally, we present a simplified protocol for removing molecular oxygen that allows adaption of the assay to a 96-well plate format. The availability of recombinant pig ETF and the microplate version of the ACAD activity assay will allow wide application of the assay for both basic research and clinical diagnostics.

  • Strategy for Disruption of the Mouse ACADM Gene
    2013
    Co-Authors: Ravi J Tolwani, Dietrich Matern, Jerry Vockley, Piero Rinaldo, Doug A Hamm, Liqun Tian, Daniel J. Sharer, Trenton R Schoeb, Philip A Wood
    Abstract:

    (A) The MCAD IV2 insertion targeting vector with a deleted 1.3-kb region encompassing exon 10 and flanking sequences. MCAD IV2 undergoes gap repair upon homologous recombination at the endogenous ACADM locus resulting in a duplication of exons 8, 9, and 10 at the disrupted allele.(B) Southern blot analysis of EcoRI-digested genomic DNA from ES cells screened by PCR. Probe A, a DNA fragment consisting of a portion of exon 10 that is not present in the targeting vector, hybridizes to an endogenous 3.1-kb fragment and, upon homologous recombination, to a 13.2-kb fragment. Lane 1 represents a wild-type ES cell line, and Lane 2 and 3 represent targeted ES cell lines.

  • Northern Blot Analysis from MCAD−/− (n = 2) and MCAD+/+ (n = 2) Mice
    2013
    Co-Authors: Ravi J Tolwani, Dietrich Matern, Jerry Vockley, Piero Rinaldo, Doug A Hamm, Liqun Tian, Daniel J. Sharer, Trenton R Schoeb, Philip A Wood
    Abstract:

    ACADM message was detected from the heart, liver, brown fat, brain, kidney, and muscle (and white fat and testes, data not shown) of only MCAD+/+ mice. Most robust expression occurred in brown fat, kidney, heart, and skeletal muscle. MCAD−/− mice had no detectable message in all tissues examined.

  • a new genetic disorder in mitochondrial fatty acid β oxidation acad9 deficiency
    American Journal of Human Genetics, 2007
    Co-Authors: S L Rutledge, David R Kelly, C A Palmer, Geoffrey Murdoch, Nilanjana Majumder, Robert D Nicholls, Zhengtong Pei, Paul A Watkins, Jerry Vockley
    Abstract:

    The acyl-CoA dehydrogenases are a family of multimeric flavoenzymes that catalyze the α,β-dehydrogenation of acyl-CoA esters in fatty acid β-oxidation and amino acid catabolism. Genetic defects have been identified in most of the acyl-CoA dehydrogenases in humans. Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified acyl-CoA dehydrogenase that demonstrates maximum activity with unsaturated long-chain acyl-CoAs. We now report three cases of ACAD9 deficiency. Patient 1 was a 14-year-old, previously healthy boy who died of a Reye-like episode and cerebellar stroke triggered by a mild viral illness and ingestion of aspirin. Patient 2 was a 10-year-old girl who first presented at age 4 mo with recurrent episodes of acute liver dysfunction and hypoglycemia, with otherwise minor illnesses. Patient 3 was a 4.5-year-old girl who died of cardiomyopathy and whose sibling also died of cardiomyopathy at age 21 mo. Mild chronic neurologic dysfunction was reported in all three patients. Defects in ACAD9 mRNA were identified in the first two patients, and all patients manifested marked defects in ACAD9 protein. Despite a significant overlap of substrate specificity, it appears that ACAD9 and very-long-chain acyl-CoA dehydrogenase are unable to compensate for each other in patients with either deficiency. Studies of the tissue distribution and gene regulation of ACAD9 and very-long-chain acyl-CoA dehydrogenase identify the presence of two independently regulated functional pathways for long-chain fat metabolism, indicating that these two enzymes are likely to be involved in different physiological functions.

  • human acyl coa dehydrogenase 9 plays a novel role in the mitochondrial β oxidation of unsaturated fatty acids
    Journal of Biological Chemistry, 2005
    Co-Authors: Regina Ensenauer, Jan Willard, Brian Berg Vandahl, Alwalid Mohsen, Grazia Isaya, Miao He, Thomas J Corydon, Eric S. Goetzman, Jerry Vockley
    Abstract:

    Unsaturated fatty acids play an important role in the prevention of human diseases such as diabetes, obesity, cancer, and neurodegeneration. However, their oxidation in vivo by acyl-CoA dehydrogenases (ACADs) that catalyze the first step of each cycle of mitochondrial fatty acid beta-oxidation is not entirely understood. Recently, a novel ACAD (ACAD-9) of unknown function that is highly homologous to human very-long-chain acyl-CoA dehydrogenase was identified by large-scale random sequencing. To characterize its enzymatic role, we have expressed ACAD-9 in Escherichia coli, purified it, and determined its pattern of substrate utilization. The N terminus of the mature form of the enzyme was identified by in vitro mitochondrial import studies of precursor protein. A 37-amino acid leader peptide was cleaved sequentially by two mitochondrial peptidases to yield a predicted molecular mass of 65 kDa for the mature subunit. Submitochondrial fractionation studies found native ACAD-9 to be associated with the mitochondrial membrane. Gel filtration analysis indicated that, like very-long-chain acyl-CoA dehydrogenase, ACAD-9 is a dimer, in contrast to the other known ACADs, which are tetramers. Purified mature ACAD-9 had maximal activity with long-chain unsaturated acyl-CoAs as substrates (C16:1-, C18:1-, C18:2-, C22:6-CoA). These results suggest a previously unrecognized role for ACAD-9 in the mitochondrial beta-oxidation of long-chain unsaturated fatty acids. Because of the substrate specificity and abundance of ACAD-9 in brain, we speculate that it may play a role in the turnover of lipid membrane unsaturated fatty acids that are essential for membrane integrity and structure.

Ute Spiekerkoetter - One of the best experts on this subject based on the ideXlab platform.

Zhihui Zhao - One of the best experts on this subject based on the ideXlab platform.

  • mir 224 affects mammary epithelial cell apoptosis and triglyceride production by downregulating ACADM and aldh2 genes
    DNA and Cell Biology, 2017
    Co-Authors: Binglei Shen, Qiqi Pan, Yuwei Yang, Yan Gao, Xin Liu, Yunsheng Han, Xue Yuan, Zhihui Zhao
    Abstract:

    MicroRNAs (miRNAs) are small noncoding RNA molecules that involve in various biological functions by regulating the expressions of target genes. In recent years, many researchers have demonstrated that miR-224 played an important role in regulating lipid metabolism. Therefore, in this study, the target genes of miR-224 were verified and the regulatory role of miR-224 was confirmed in lipid metabolism. In this study, bioinformatics methods were used for primarily predicting the target gene of miR-224 and dual-luciferase reporter system was used for further verify the relationship between miR-224 and its target gene. Then, the miR-224 mimics, miR-224 inhibitor, and miRNA-ShNC were transfected into mammary epithelial cells (MECs), respectively, and the expression of miR-224 and its target genes was detected by quantitative real-time polymerase chain reaction and Western blot. Furthermore, the triglyceride production and cell apoptosis were detected by triglyceride mensuration reagent kit using flow cytometry. The results showed that ACADM and ALDH2 were predicted to be the target genes of miR-224, primarily by bioinformatics analysis. We founded that miR-224 could recognize with ACADM-3'UTR and ALDH2-3'UTR, indicating that the target sites existed in 3'UTR of ACADM and ALDH2. And then, the expressions of miR-224 had negative trend with the levels of ACADM and ALDH2, suggesting that miR-224 could downregulate the expressions of ACADM and ALDH2. Finally, the triglyceride production decreased and apoptosis rate increased after the overexpression of miR-224 in MECs. The above results indicated that miR-224 regulating target genes in lipid metabolism might be used as a new pathway for better breeding.

  • differential expression of pparγ fasn and ACADM genes in various adipose tissues and longissimus dorsi muscle from yanbian yellow cattle and yan yellow cattle
    Asian-australasian Journal of Animal Sciences, 2014
    Co-Authors: Runjun Yang, Zhengyan Qiu, Changguo Yan, Zhihui Zhao
    Abstract:

    The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of PPARγ, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that PPARγ gene expression was significantly higher in adipose tissue than in LD in both breeds. PPARγ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of PPARγ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle.

  • Differential Expression of , , and Genes in Various Adipose Tissues and Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle
    Asian-Australasian Association of Animal Production Societies, 2014
    Co-Authors: Runjun Yang, Zhengyan Qiu, Changguo Yan, Zhihui Zhao
    Abstract:

    The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of PPARγ, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that PPARγ gene expression was significantly higher in adipose tissue than in LD in both breeds. PPARγ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p

Esther M. Maier - One of the best experts on this subject based on the ideXlab platform.

  • The Domain-Specific and Temperature-Dependent Protein Misfolding Phenotype of Variant Medium-Chain acyl-CoA Dehydrogenase
    2014
    Co-Authors: Johanna M. Jank, Christian P. Sommerhoff, Esther M. Maier, Dunja D. Reiß, Martin Haslbeck, Kristina F. Kemter, Marietta S. Truger, Sacha Ferdinandusse, Ronald J. Wanders, Søren W. Gersting
    Abstract:

    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p.Ala52Val, p.Tyr67His, p.Tyr158His, p.Arg206Cys, p.Asp266Gly, p.Lys329Glu, p.Arg334Lys, p.Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central β-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p.Lys329Glu (K304E), the classical severe mutation, and p.Tyr67His (Y42H), discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD.

  • protein misfolding is the molecular mechanism underlying mcadd identified in newborn screening
    Human Molecular Genetics, 2009
    Co-Authors: Esther M. Maier, Christian P. Sommerhoff, Søren W. Gersting, Johanna M. Jank, Kristina F. Kemter, Marietta S. Truger, Maria Reindl, Dunja D Messing, Ania C. Muntau
    Abstract:

    Newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) revealed a higher birth prevalence and genotypic variability than previously estimated, including numerous novel missense mutations in the ACADM gene. On average, these mutations are associated with milder biochemical phenotypes raising the question about their pathogenic relevance. In this study, we analyzed the impact of 10 ACADM mutations identified in NBS (A27V, Y42H, Y133H, R181C, R223G, D241G, K304E, R309K, I331T and R388S) on conformation, stability and enzyme kinetics of the corresponding proteins. Partial to total rescue of aggregation by co-overexpression of GroESL indicated protein misfolding. This was confirmed by accelerated thermal unfolding in all variants, as well as decreased proteolytic stability and accelerated thermal inactivation in most variants. Catalytic function varied from high residual activity to markedly decreased activity or substrate affinity. Mutations mapping to the β-domain of the protein predisposed to severe destabilization. In silico structural analyses of the affected amino acid residues revealed involvement in functionally relevant networks. Taken together, our results substantiate the hypothesis of protein misfolding with loss-of-function being the common molecular basis in MCADD. Moreover, considerable structural alterations in all analyzed variants do not support the view that novel mutations found in NBS bear a lower risk of metabolic decompensation than that associated with mutations detected in clinically ascertained patients. Finally, the detailed insight into how ACADM missense mutations induce loss of MCAD function may provide guidance for risk assessment and counseling of patients, and in future may assist delineation of novel pharmacological strategies.

  • population spectrum of ACADM genotypes correlated to biochemical phenotypes in newborn screening for medium chain acyl coa dehydrogenase deficiency
    Human Mutation, 2005
    Co-Authors: Esther M. Maier, B Liebl, Wulf Roschinger, U Nennstielratzel, Ralph Fingerhut, Bernhard Olgemoller, Ulrich Busch, Nils Krone, Rudiger Von Kries, Adelbert A Roscher
    Abstract:

    Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent inherited defect of fatty acid oxidation, with a significant morbidity and mortality in undiagnosed patients. Adverse outcomes can effectively be prevented by avoiding metabolic stress and following simple dietary measures. Therefore, prospective newborn screening (NBS) is being proposed for this condition. However, technical validation of MCADD population screening and assessment of its overall benefit require broadening of the as-yet-scarce knowledge of the MCADD genetic heterogeneity unraveled by NBS and its phenotypic consequences. Here, we describe the entire spectrum of sequence variations occurring in newborns with MCADD in the population of Bavaria, Germany, in relation to the biochemical phenotype. Among 524,287 newborns, we identified 62 cases of MCADD, indicating a birth incidence of 1 in 8,456. In all of the 57 newborns available for analysis, two alterations within the MCADD gene (ACADM) were identified. The most prevalent alteration c.985A>G (Lys329Glu) occurred in 27 (47%) newborns in the homozygous and in 18 (32%) in the heterozygous state (63% of defective alleles). The mild folding variant c.199T>C (Tyr67His) was identified in nine individuals, six of them being compound heterozygous with c.985A>G (Lys329Glu). Neither of the prevalent alterations were found in the remaining nine newborns. A total of 18 sequence variations were identified; 13 of them were novel: eight missense mutations, one nonsense mutation, two splice variants, and two small deletions. The remaining five were previously reported in MCADD patients. The ACADM heterogeneity uncovered was larger as anticipated from previous c.985A>G (Lys329Glu) carrier screening data. In addition, we show that MCADD appears to occur as frequently in Turkish newborns as in the native German population. Our data validate that biochemical NBS for MCADD is a highly specific procedure for disease detection, with the identification of a significant share of milder biochemical phenotypes, such as c.199T>C (Tyr67His). These show statistically lower acylcarnitine markers, allowing us to distinguish subgroups within the spectrum of ACADM sequence variations that correlate to biochemical MCADD disease expression. Our data might provide technical and medical guidance for decision making in the worldwide efforts to introduce MCADD population screening. Hum Mutat 25:443–452, 2005. © 2005 Wiley-Liss, Inc.