Acartia - Explore the Science & Experts | ideXlab


Scan Science and Technology

Contact Leading Edge Experts & Companies

Acartia

The Experts below are selected from a list of 6606 Experts worldwide ranked by ideXlab platform

Acartia – Free Register to Access Experts & Abstracts

S. Mudrak – One of the best experts on this subject based on the ideXlab platform.

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented, describing the seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep). The copepod model was coupled with a one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton, and an early juvenile of herring as a predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as an animal having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth in the older stages of 6 cohorts of each species, to arrive at a total population biomass. The peaks of copepods’ biomass are larger at the turn of June and July for Pseudocalanus and smaller in July for Acartia, lagging that of phytoplankton by ca. two mouths, due to the growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gda?sk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but the main development formed after the bloom, in both cases. The phytoplankton bloom is very important in the diet of the adults of the copepods, but it is not particularly important for the youngest part of new generation (early nauplii). However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was a major cause in limiting phytoplankton bloom. The model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences Discussions, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented describing a seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep). The copepod model was coupled with an one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton and an early juvenile of herring as predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as animals having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming, that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth of older stages of 6 cohorts each species to total population biomass. The peaks of copepods biomass, main, at the turn of June and July for Pseudocalanus and smaller, in July for Acartia, lag that phytoplankton by ca. two mouths due to growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gdansk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but main development formed after the bloom, in both cases. However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was major cause limiting phytoplankton bloom. Model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

L. Dzierzbicka-g?owacka – One of the best experts on this subject based on the ideXlab platform.

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented, describing the seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep). The copepod model was coupled with a one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton, and an early juvenile of herring as a predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as an animal having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth in the older stages of 6 cohorts of each species, to arrive at a total population biomass. The peaks of copepods’ biomass are larger at the turn of June and July for Pseudocalanus and smaller in July for Acartia, lagging that of phytoplankton by ca. two mouths, due to the growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gda?sk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but the main development formed after the bloom, in both cases. The phytoplankton bloom is very important in the diet of the adults of the copepods, but it is not particularly important for the youngest part of new generation (early nauplii). However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was a major cause in limiting phytoplankton bloom. The model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences Discussions, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented describing a seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep). The copepod model was coupled with an one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton and an early juvenile of herring as predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as animals having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming, that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth of older stages of 6 cohorts each species to total population biomass. The peaks of copepods biomass, main, at the turn of June and July for Pseudocalanus and smaller, in July for Acartia, lag that phytoplankton by ca. two mouths due to growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gdansk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but main development formed after the bloom, in both cases. However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was major cause limiting phytoplankton bloom. Model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

L. Bielecka – One of the best experts on this subject based on the ideXlab platform.

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) – numerical simulations
    Biogeosciences, 2006
    Co-Authors: Lidia Dzierzbicka-głowacka, L. Bielecka, Stella Mudrak

    Abstract:

    Abstract. A population dynamics model for copepods is presented, describing the seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep). The copepod model was coupled with a one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton, and an early juvenile of herring as a predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as an animal having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth in the older stages of 6 cohorts of each species, to arrive at a total population biomass. The peaks of copepods’ biomass are larger at the turn of June and July for Pseudocalanus and smaller in July for Acartia, lagging that of phytoplankton by ca. two mouths, due to the growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gdansk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but the main development formed after the bloom, in both cases. The phytoplankton bloom is very important in the diet of the adults of the copepods, but it is not particularly important for the youngest part of new generation (early nauplii). However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was a major cause in limiting phytoplankton bloom. The model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented, describing the seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep). The copepod model was coupled with a one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton, and an early juvenile of herring as a predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as an animal having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth in the older stages of 6 cohorts of each species, to arrive at a total population biomass. The peaks of copepods’ biomass are larger at the turn of June and July for Pseudocalanus and smaller in July for Acartia, lagging that of phytoplankton by ca. two mouths, due to the growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gda?sk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but the main development formed after the bloom, in both cases. The phytoplankton bloom is very important in the diet of the adults of the copepods, but it is not particularly important for the youngest part of new generation (early nauplii). However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was a major cause in limiting phytoplankton bloom. The model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article

  • Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gda?sk Deep) ? numerical simulations
    Biogeosciences Discussions, 2006
    Co-Authors: L. Dzierzbicka-g?owacka, L. Bielecka, S. Mudrak

    Abstract:

    A population dynamics model for copepods is presented describing a seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep). The copepod model was coupled with an one-dimensional physical and biological upper layer model for nutrients (total inorganic nitrogen, phosphate), phytoplankton, microzooplankton and an early juvenile of herring as predator. In this model, mesozooplankton (herbivorous copepods) has been introduced as animals having definite patterns of growth in successive stages, reproduction and mortality. The populations are represented by 6 cohorts in different developmental stages, thus assuming, that recruitment of the next generation occurs after a fixed period of adult life. The copepod model links trophic processes and population dynamics, and simulates individual growth within cohorts and the changes in biomass between cohorts. The simulations of annual cycles of copepods contain one complete generation of Pseudocalanus and two generations of Acartia in the whole column water, and indicate the importance of growth of older stages of 6 cohorts each species to total population biomass. The peaks of copepods biomass, main, at the turn of June and July for Pseudocalanus and smaller, in July for Acartia, lag that phytoplankton by ca. two mouths due to growth of cohorts in successive stages and egg production by females. The numerical results show that the investigated species could not be the main factor limiting the spring phytoplankton bloom in the Gdansk Deep, because the initial development was slow for Acartia and faster for Pseudocalanus, but main development formed after the bloom, in both cases. However, the simulated microzooplankton biomass was enough high to conclude, in our opinion, that, in this case, it was major cause limiting phytoplankton bloom. Model presented here is a next step in understanding how the population dynamics of a dominant species in the southern Baltic Sea interact with the environment.

    Free Register to Access Article