Acropora millepora

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2613 Experts worldwide ranked by ideXlab platform

David G Bourne - One of the best experts on this subject based on the ideXlab platform.

  • amamp1 from Acropora millepora and damicornin define a family of coral specific antimicrobial peptides related to the shk toxins of sea anemones
    Developmental and Comparative Immunology, 2021
    Co-Authors: Benjamin Mason, David G Bourne, David C Hayward, Ira R. Cooke, Aurelie Moya, René Augustin, Mei-fang Lin, Nori Satoh, Thomas C. G. Bosch, Natalia Andrade
    Abstract:

    A candidate antimicrobial peptide (AmAMP1) was identified by searching the whole genome sequence of Acropora millepora for short (<125AA) cysteine-rich predicted proteins with an N-terminal signal peptide but lacking clear homologs in the SwissProt database. It resembled but was not closely related to damicornin, the only other known AMP from a coral, and was shown to be active against both Gram-negative and Gram-positive bacteria. These proteins define a family of AMPs present in corals and their close relatives, the Corallimorpharia, and are synthesised as preproproteins in which the C-terminal mature peptide contains a conserved arrangement of six cysteine residues. Consistent with the idea of a common origin for AMPs and toxins, this Cys motif is shared between the coral AMPs and the Shk neurotoxins of sea anemones. AmAMP1 is expressed at late stages of coral development, in ectodermal cells that resemble the "ganglion neurons" of Hydra, in which it has recently been demonstrated that a distinct AMP known as NDA-1 is expressed.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC Genomics, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Abstract Background Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Results Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. Conclusions This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs

  • Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals
    BMC Genomics, 2017
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Cherie A. Motti, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions.

  • imaging the uptake of nitrogen fixing bacteria into larvae of the coral Acropora millepora
    The ISME Journal, 2016
    Co-Authors: Kimberley A Lema, Bette L Willis, David G Bourne, Peta L. Clode, Matt R. Kilburn, Ruth B. Thornton
    Abstract:

    Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora

David J. Miller - One of the best experts on this subject based on the ideXlab platform.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC Genomics, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs.

  • Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis.
    Developmental Biology, 2019
    Co-Authors: Rosalind Attenborough, David C Hayward, David J. Miller, Sylvain Forêt, Ursula M. Wiedemann, Eldon E. Ball
    Abstract:

    Neuropeptides play critical roles in cnidarian development. However, although they are known to play key roles in settlement and metamorphosis, their temporal and spatial developmental expression has not previously been characterized in any coral. We here describe Acropora millepora LWamide and RFamide and their developmental expression from the time of their first appearance, using in situ hybridization and FMRFamide immunohistochemistry. AmRFamide transcripts first appear in the ectoderm toward the oral end of the planula larva following blastopore closure. This oral bias becomes less apparent as the planula develops. The cell bodies of AmRFamide-expressing cells are centrally located in the ectoderm, with narrow projections to the mesoglea and to the cell surface. As the planula approaches settlement, AmRFamide expression disappears and is undetectable in the newly settled polyp. Expressing cells then gradually reappear as the polyp develops, becoming particularly abundant on the tentacles. AmLWamide transcripts first appear in ectodermal cells of the developing planula, with minimal expression at its two ends. The cell bodies of expressing cells lie just above the mesoglea, in a position distinct from those of AmRFamide-expressing cells, and have a narrow projection extending across the ectoderm to its surface. AmLWamide-expressing cells persist for most of the planula stage, disappearing shortly before settlement, but later than AmRFamide-expressing cells. As is the case with AmRFamide, expressing cells are absent from the polyp immediately after settlement, reappearing later on its oral side. AmLWamide expression lags that of AmRFamide in both its disappearance and reappearance. Antibodies to FMRFamide stain cells in a pattern similar to that of the transcripts, but also cells in areas where there is no expression revealed by in situ hybridization, most notably at the aboral end of the planula and in the adult polyp. Adult polyps have numerous staining cells on the tentacles and oral discs, as well as an immunoreactive nerve ring around the mouth. There are scattered staining cells in the coenosarc between polyps and staining cells are abundant in the mesenterial filaments. The above results are discussed in the context of our knowledge of the behavior of coral planulae at the time of their settlement and metamorphosis. Corals are facing multiple environmental threats, and these results both highlight the need for, and bring us a step closer to, a mechanistic understanding of a process that is critical to their survival.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Abstract Background Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Results Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. Conclusions This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs

  • Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals
    BMC Genomics, 2017
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Cherie A. Motti, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions.

  • millepora annotation file
    2017
    Co-Authors: Anthony Bertucci, Sylvain Forêt, Eldon E. Ball, David J. Miller
    Abstract:

    Acropora millepora GO annotation fil

David C Hayward - One of the best experts on this subject based on the ideXlab platform.

  • amamp1 from Acropora millepora and damicornin define a family of coral specific antimicrobial peptides related to the shk toxins of sea anemones
    Developmental and Comparative Immunology, 2021
    Co-Authors: Benjamin Mason, David G Bourne, David C Hayward, Ira R. Cooke, Aurelie Moya, René Augustin, Mei-fang Lin, Nori Satoh, Thomas C. G. Bosch, Natalia Andrade
    Abstract:

    A candidate antimicrobial peptide (AmAMP1) was identified by searching the whole genome sequence of Acropora millepora for short (<125AA) cysteine-rich predicted proteins with an N-terminal signal peptide but lacking clear homologs in the SwissProt database. It resembled but was not closely related to damicornin, the only other known AMP from a coral, and was shown to be active against both Gram-negative and Gram-positive bacteria. These proteins define a family of AMPs present in corals and their close relatives, the Corallimorpharia, and are synthesised as preproproteins in which the C-terminal mature peptide contains a conserved arrangement of six cysteine residues. Consistent with the idea of a common origin for AMPs and toxins, this Cys motif is shared between the coral AMPs and the Shk neurotoxins of sea anemones. AmAMP1 is expressed at late stages of coral development, in ectodermal cells that resemble the "ganglion neurons" of Hydra, in which it has recently been demonstrated that a distinct AMP known as NDA-1 is expressed.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC Genomics, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs.

  • Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis.
    Developmental Biology, 2019
    Co-Authors: Rosalind Attenborough, David C Hayward, David J. Miller, Sylvain Forêt, Ursula M. Wiedemann, Eldon E. Ball
    Abstract:

    Neuropeptides play critical roles in cnidarian development. However, although they are known to play key roles in settlement and metamorphosis, their temporal and spatial developmental expression has not previously been characterized in any coral. We here describe Acropora millepora LWamide and RFamide and their developmental expression from the time of their first appearance, using in situ hybridization and FMRFamide immunohistochemistry. AmRFamide transcripts first appear in the ectoderm toward the oral end of the planula larva following blastopore closure. This oral bias becomes less apparent as the planula develops. The cell bodies of AmRFamide-expressing cells are centrally located in the ectoderm, with narrow projections to the mesoglea and to the cell surface. As the planula approaches settlement, AmRFamide expression disappears and is undetectable in the newly settled polyp. Expressing cells then gradually reappear as the polyp develops, becoming particularly abundant on the tentacles. AmLWamide transcripts first appear in ectodermal cells of the developing planula, with minimal expression at its two ends. The cell bodies of expressing cells lie just above the mesoglea, in a position distinct from those of AmRFamide-expressing cells, and have a narrow projection extending across the ectoderm to its surface. AmLWamide-expressing cells persist for most of the planula stage, disappearing shortly before settlement, but later than AmRFamide-expressing cells. As is the case with AmRFamide, expressing cells are absent from the polyp immediately after settlement, reappearing later on its oral side. AmLWamide expression lags that of AmRFamide in both its disappearance and reappearance. Antibodies to FMRFamide stain cells in a pattern similar to that of the transcripts, but also cells in areas where there is no expression revealed by in situ hybridization, most notably at the aboral end of the planula and in the adult polyp. Adult polyps have numerous staining cells on the tentacles and oral discs, as well as an immunoreactive nerve ring around the mouth. There are scattered staining cells in the coenosarc between polyps and staining cells are abundant in the mesenterial filaments. The above results are discussed in the context of our knowledge of the behavior of coral planulae at the time of their settlement and metamorphosis. Corals are facing multiple environmental threats, and these results both highlight the need for, and bring us a step closer to, a mechanistic understanding of a process that is critical to their survival.

  • Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress
    BMC, 2019
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Abstract Background Coral reefs can experience salinity fluctuations due to rainfall and runoff; these events can have major impacts on the corals and lead to bleaching and mortality. On the Great Barrier Reef (GBR), low salinity events, which occur during summer seasons and can involve salinity dropping ~ 10 PSU correlate with declines in coral cover, and these events are predicted to increase in frequency and severity under future climate change scenarios. In other marine invertebrates, exposure to low salinity causes increased expression of genes involved in proteolysis, responses to oxidative stress, and membrane transport, but the effects that changes in salinity have on corals have so far received only limited attention. To better understand the coral response to hypo-osmotic stress, here we investigated the transcriptomic response of the coral Acropora millepora in both adult and juvenile life stages to acute (1 h) and more prolonged (24 h) exposure to low salinity. Results Differential gene expression analysis revealed the involvement of both common and specific response mechanisms in Acropora. The general response to environmental stressors included up-regulation of genes involved in the mitigation of macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. Conclusions This study is the first comprehensive transcriptomic analysis of the coral response to low salinity stress and provides important insights into the likely consequences of heavy rainfall and runoff events on coral reefs

  • Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals
    BMC Genomics, 2017
    Co-Authors: Catalina Aguilar, Jean-baptiste Raina, David G Bourne, David C Hayward, Cherie A. Motti, Sylvain Forêt, Bruno Lapeyre, David J. Miller
    Abstract:

    Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions.

Eldon E. Ball - One of the best experts on this subject based on the ideXlab platform.

  • Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis.
    Developmental Biology, 2019
    Co-Authors: Rosalind Attenborough, David C Hayward, David J. Miller, Sylvain Forêt, Ursula M. Wiedemann, Eldon E. Ball
    Abstract:

    Neuropeptides play critical roles in cnidarian development. However, although they are known to play key roles in settlement and metamorphosis, their temporal and spatial developmental expression has not previously been characterized in any coral. We here describe Acropora millepora LWamide and RFamide and their developmental expression from the time of their first appearance, using in situ hybridization and FMRFamide immunohistochemistry. AmRFamide transcripts first appear in the ectoderm toward the oral end of the planula larva following blastopore closure. This oral bias becomes less apparent as the planula develops. The cell bodies of AmRFamide-expressing cells are centrally located in the ectoderm, with narrow projections to the mesoglea and to the cell surface. As the planula approaches settlement, AmRFamide expression disappears and is undetectable in the newly settled polyp. Expressing cells then gradually reappear as the polyp develops, becoming particularly abundant on the tentacles. AmLWamide transcripts first appear in ectodermal cells of the developing planula, with minimal expression at its two ends. The cell bodies of expressing cells lie just above the mesoglea, in a position distinct from those of AmRFamide-expressing cells, and have a narrow projection extending across the ectoderm to its surface. AmLWamide-expressing cells persist for most of the planula stage, disappearing shortly before settlement, but later than AmRFamide-expressing cells. As is the case with AmRFamide, expressing cells are absent from the polyp immediately after settlement, reappearing later on its oral side. AmLWamide expression lags that of AmRFamide in both its disappearance and reappearance. Antibodies to FMRFamide stain cells in a pattern similar to that of the transcripts, but also cells in areas where there is no expression revealed by in situ hybridization, most notably at the aboral end of the planula and in the adult polyp. Adult polyps have numerous staining cells on the tentacles and oral discs, as well as an immunoreactive nerve ring around the mouth. There are scattered staining cells in the coenosarc between polyps and staining cells are abundant in the mesenterial filaments. The above results are discussed in the context of our knowledge of the behavior of coral planulae at the time of their settlement and metamorphosis. Corals are facing multiple environmental threats, and these results both highlight the need for, and bring us a step closer to, a mechanistic understanding of a process that is critical to their survival.

  • millepora annotation file
    2017
    Co-Authors: Anthony Bertucci, Sylvain Forêt, Eldon E. Ball, David J. Miller
    Abstract:

    Acropora millepora GO annotation fil

  • A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora - morphology, transcriptome, and developmental gene expression
    BMC Evolutionary Biology, 2016
    Co-Authors: Nami Okubo, David C Hayward, Sylvain Forêt, Eldon E. Ball
    Abstract:

    Background Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes.

  • Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light‐enhanced calcification in corals
    Molecular Ecology, 2015
    Co-Authors: Anthony Bertucci, Sylvain Forêt, Eldon E. Ball, David J. Miller
    Abstract:

    The evolutionary success of reef-building corals is often attributed to their symbiotic relationship with photosynthetic dinoflagellates of the genus Symbiodinium, but metabolic interactions between the partners and the molecular bases of light-enhanced calcification (LEC) are not well understood. Here, the metabolic bases of the interaction between the coral Acropora millepora and its dinoflagellate symbiont were investigated by comparing gene expression levels under light and dark conditions at the whole transcriptome level. Among the 497 differentially expressed genes identified, a suite of genes involved in cholesterol transport was found to be upregulated under light conditions, confirming the significance of this compound in the coral symbiosis. Although ion transporters likely to have roles in calcification were not differentially expressed in this study, expression levels of many genes associated with skeletal organic matrix composition and organization were higher in light conditions. This implies that the rate of organic matrix synthesis is one factor limiting calcification at night. Thus, LEC during the day is likely to be a consequence of increases in both matrix synthesis and the supply of precursor molecules as a result of photosynthetic activity.

  • the organizer in evolution gastrulation and organizer gene expression highlight the importance of brachyury during development of the coral Acropora millepora
    Developmental Biology, 2015
    Co-Authors: David C Hayward, Robert Saint, David J. Miller, Eldon E. Ball, Lauretta C. Grasso
    Abstract:

    Organizer activity, once thought to be restricted to vertebrates, has ancient origins. However, among non-bilaterians, it has only been subjected to detailed investigation during embryonic development of the sea anemone, Nematostella vectensis. As a step toward establishing the extent to which findings in Nematostella can be generalized across the large and diverse phylum Cnidaria, we examined the expression of some key organizer and gastrulation genes during the embryonic development of the coral Acropora millepora. Although anemones and corals both belong to the cnidarian class Anthozoa, the two lineages diverged during the Cambrian and the morphological development of Acropora differs in several important respects from that of Nematostella. While the expression patterns of the key genes brachyury, bmp2/4, chordin, goosecoid and forkhead are broadly similar, developmental differences between the two species enable novel observations, and new interpretations of their significance. Specifically, brachyury expression during the flattened prawnchip stage before gastrulation, a developmental peculiarity of Acropora, leads us to suggest that it is the key gene demarcating ectoderm from endoderm in Acropora, and by implication in other cnidarians, whereas previous studies in Nematostella proposed that forkhead plays this role. Other novel observations include the transient expression of Acropora forkhead in scattered ectodermal cells shortly after gastrulation, and in the developing mesenterial filaments, with no corresponding expression reported in Nematostella. In addition, the expression patterns of goosecoid and bmp2/4 confirm the fundamental bilaterality of the Anthozoa.

Bette L Willis - One of the best experts on this subject based on the ideXlab platform.

  • Predicting the spatial distribution of allele frequencies for a gene associated with tolerance to eutrophication and high temperature in the reef-building coral, Acropora millepora, on the Great Barrier Reef
    Coral Reefs, 2019
    Co-Authors: Young K. Jin, Petra B. Lundgren, Stuart Kininmonth, Madeleine J. H. Van Oppen, Bette L Willis
    Abstract:

    In the face of unprecedented rates of environmental alterations, the necessity to predict the capacity of corals to respond adaptively in a complex ecological system is becoming increasingly urgent. Recent findings that bleaching-resistant Acropora millepora coral populations have high frequencies of specific alleles provide an opportunity to use spatial mapping of alleles to identify resistant populations. In this study, a Bayesian belief network (BBN) model was developed to predict the spatial distribution of allele frequencies for a specific locus associated with bleaching resistance in response to acute eutrophication during the summertime in A. millepora in the Palm Islands (Great Barrier Reef, Australia). The BBN model enabled the putative responses of populations investigated to be extrapolated to other ‘equivalent’ populations that were previously not surveyed due to constraints of time, cost and logistics. A combination of long-term environmental monitoring data, allele frequency data, expert input and statistical evaluation was used to build the model, with the goal of refining prior beliefs and examining dependencies among environmental variables. The Bayesian simulation approach demonstrates that synergism between highly fluctuating temperatures and high nitrate concentrations may be the primary driver of selection for this locus. Consistently, spatial mapping of predicted allele frequencies reveals the tolerance allele is most likely to be concentrated in populations near the mouths of the Burdekin and Fitzroy Rivers. Corals from these river mouths are good candidates for assisted gene flow initiatives and also to restore reefs that are likely to be affected by eutrophication and ocean warming in the future. This approach opens up new opportunities for more efficient and effective coral reef management and conservation through direct intervention to ensure coral populations have the genetic diversity needed to optimise adaptation to rapid environmental change.

  • imaging the uptake of nitrogen fixing bacteria into larvae of the coral Acropora millepora
    The ISME Journal, 2016
    Co-Authors: Kimberley A Lema, Bette L Willis, David G Bourne, Peta L. Clode, Matt R. Kilburn, Ruth B. Thornton
    Abstract:

    Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora

  • Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora
    The Biological Bulletin, 2016
    Co-Authors: Aisling K. Brady, Bette L Willis, Lawrence D. Harder, Peter D. Vize
    Abstract:

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.

  • Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora
    The ISME Journal, 2015
    Co-Authors: Kimberley A Lema, Bette L Willis, Peta L. Clode, Matt R. Kilburn, Ruth B. Thornton, David G Bourne
    Abstract:

    Diazotrophic bacteria are instrumental in generating biologically usable forms of nitrogen by converting abundant dinitrogen gas (N2) into available forms, such as ammonium. Although nitrogen is crucial for coral growth, direct observation of associations between diazotrophs and corals has previously been elusive. We applied fluorescence in situ hybridization (FISH) and nanoscale secondary ion mass spectrometry to observe the uptake of (15)N-enriched diazotrophic Vibrio sp. isolated from Acropora millepora into conspecific coral larvae. Incorporation of Vibrio sp. cells was observed in coral larvae after 4-h incubation with enriched bacteria. Uptake was restricted to the aboral epidermis of larvae, where Vibrio cells clustered in elongated aggregations. Other bacterial associates were also observed in epidermal areas in FISH analyses. Although the fate and role of these bacteria requires additional investigation, this study describes a powerful approach to further explore cell associations and nutritional pathways in the early life stages of the coral holobiont.

  • Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.
    Marine genomics, 2015
    Co-Authors: Melissa M Rocker, Bette L Willis, Sam Noonan, Aurelie Moya, Craig Humphrey, Line K. Bay
    Abstract:

    Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments.