Scan Science and Technology
Contact Leading Edge Experts & Companies
Air Sampling
The Experts below are selected from a list of 252 Experts worldwide ranked by ideXlab platform
Martin Harper – One of the best experts on this subject based on the ideXlab platform.
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Keenan Monaghan, Mike Kashon, Martin HarperAbstract:ABSTRACTThe collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min−1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS)….
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Jhycharm Soo, Keenan Monaghan, Mike Kashon, Taekhee Lee, Martin HarperAbstract:The collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10-400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min-1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with Airflow, pore size, and Sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased Sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes.
-
Performance evaluation of on-site colorimetric Air Sampling techniques.
Applied occupational and environmental hygiene, 2001Co-Authors: Martin HarperAbstract:(2001). Performance Evaluation of On-Site Colorimetric Air Sampling Techniques. Applied Occupational and Environmental Hygiene: Vol. 16, No. 12, pp. 1092-1096.
Keenan Monaghan – One of the best experts on this subject based on the ideXlab platform.
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Keenan Monaghan, Mike Kashon, Martin HarperAbstract:ABSTRACTThe collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min−1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS)….
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Jhycharm Soo, Keenan Monaghan, Mike Kashon, Taekhee Lee, Martin HarperAbstract:The collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10-400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min-1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with Airflow, pore size, and Sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased Sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes.
Mike Kashon – One of the best experts on this subject based on the ideXlab platform.
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Keenan Monaghan, Mike Kashon, Martin HarperAbstract:ABSTRACTThe collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min−1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS)….
-
Air Sampling filtration media collection efficiency for respirable size selective Sampling
Aerosol Science and Technology, 2016Co-Authors: Jhycharm Soo, Keenan Monaghan, Mike Kashon, Taekhee Lee, Martin HarperAbstract:The collection efficiencies of commonly used membrane Air Sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10-400 nm. Test aerosols were nebulized and introduced into a calm Air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min-1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with Airflow, pore size, and Sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased Sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes.