AKR1C3 - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

AKR1C3

The Experts below are selected from a list of 1659 Experts worldwide ranked by ideXlab platform

T M Penning – 1st expert on this subject based on the ideXlab platform

  • a 3 4 nitronaphthen 1 yl amino benzoate analog as a bifunctional AKR1C3 inhibitor and ar antagonist head to head comparison with other advanced AKR1C3 targeted therapeutics
    The Journal of Steroid Biochemistry and Molecular Biology, 2019
    Co-Authors: Phumvadee Wangtrakuldee, Adegoke O Adeniji, Barry M Twenter, Jeffrey D Winkler, Tianzhu Zang, Ling Duan, Buddha B Khatri, Michelle A Estrada, Tyler F Higgins, T M Penning

    Abstract:

    Abstract Drugs used for the treatment of castration resistant prostate cancer (CRPC) include Abiraterone acetate (Zytiga®) and Enzalutamide (XTANDI®). However, these drugs provide clinical benefit in metastatic disease for only a brief period before drug resistance emerges. One mechanism of drug resistance involves the overexpression of type 5 17-β-hydroxysteroid dehydrogenase (aldo-keto reductase 1C3 or AKR1C3), a major enzyme responsible for the formation of intratumoral androgens that activate the androgen receptor (AR). 3-((4-Nitronaphthalen-1-yl)amino)benzoic acid 1 is a “first-in-class” AKR1C3 competitive inhibitor and AR antagonist. Compound 1 was compared in a battery of in vitro studies with structurally related N-naphthyl-aminobenzoates, and AKR1C3 targeted therapeutics e.g. GTx-560 and ASP9521, as well as with R-bicalutamide, enzalutamide and abiraterone acetate. Compound 1 was the only naphthyl derivative that was a selective AKR1C3 inhibitor and AR antagonist in direct competitive binding assays and in AR driven reporter gene assays. GTx-560 displayed weak activity as a direct AR antagonist but had high potency in the AR reporter gene assay consistent with its ability to inhibit the co-activator function of AKR1C3. By contrast ASP9521 did not act as either an AR antagonist or block AR reporter gene activity. Compound 1 was the only compound that showed comparable potency to inhibit AKR1C3 and act as a direct AR antagonist. Compound 1 blocked the formation of testosterone in LNCaP-AKR1C3 cells, and the expression of PSA driven by the AKR1C3 substrate (4-androstene-3,17-dione) and by an AR agonist, 5α-dihydrotestosterone consistent with its bifunctional role. Compound 1 blocked the nuclear translocation of the AR at similar concentrations to enzalutamide and caused disappearance of the AR from cell lysates. R-biaclutamide and enzalutamide inhibited AKR1C3 at concentrations 200x greater than compound 1, suggesting that its bifunctionality can be explained by a shared pharmacophore that can be optimized.

  • AKR1C3 type 5 17β hydroxysteroid dehydrogenase prostaglandin f synthase roles in malignancy and endocrine disorders
    Molecular and Cellular Endocrinology, 2019
    Co-Authors: T M Penning

    Abstract:

    Abstract Aldo-Keto-Reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase (HSD)/prostaglandin (PG) F2α synthase) is the only 17β-HSD that is not a short-chain dehydrogenase/reductase. By acting as a 17-ketosteroid reductase, AKR1C3 produces potent androgens in peripheral tissues which activate the androgen receptor (AR) or act as substrates for aromatase. AKR1C3 is implicated in the production of androgens in castration-resistant prostate cancer (CRPC) and polycystic ovarian syndrome; and is implicated in the production of aromatase substrates in breast cancer. By acting as an 11-ketoprostaglandin reductase, AKR1C3 generates 11β-PGF2α to activate the FP receptor and deprives peroxisome proliferator activator receptorγ of its putative PGJ2 ligands. These growth stimulatory signals implicate AKR1C3 in non-hormonal dependent malignancies e.g. acute myeloid leukemia (AML). AKR1C3 moonlights by acting as a co-activator of the AR and stabilizes ubiquitin ligases. AKR1C3 inhibitors have been used clinically for CRPC and AML and can be used to probe its pluripotency.

  • potent and highly selective aldo keto reductase 1c3 AKR1C3 inhibitors act as chemotherapeutic potentiators in acute myeloid leukemia and t cell acute lymphoblastic leukemia
    Journal of Medicinal Chemistry, 2019
    Co-Authors: Kshitij Verma, T M Penning, Tianzhu Zang, Paul C Trippier

    Abstract:

    Aldo–keto reductase 1C3 (AKR1C3) catalyzes the synthesis of 9α,11β-prostaglandin (PG) F2α and PGF2α prostanoids that sustain the growth of myeloid precursors in the bone marrow. The enzyme is overexpressed in acute myeloid leukemia (AML) and T-cell acute lymphoblastic leukemia (T-ALL). Moreover, AKR1C3 confers chemotherapeutic resistance to the anthracyclines: first-line agents for the treatment of leukemias. The highly homologous isoforms AKR1C1 and AKR1C2 inactivate 5α-dihydrotestosterone, and their inhibition would be undesirable. We report herein the identification of AKR1C3 inhibitors that demonstrate exquisite isoform selectivity for AKR1C3 over the other closely related isoforms to the order of >2800-fold. Biological evaluation of our isoform-selective inhibitors revealed a high degree of synergistic drug action in combination with the clinical leukemia therapeutics daunorubicin and cytarabine in in vitro cellular models of AML and primary patient-derived T-ALL cells. Our developed compounds exhibi…

Kar Ming Fung – 2nd expert on this subject based on the ideXlab platform

  • Original Article Expression of aldo-keto reductase family 1 member C3 (AKR1C3) in neuroendocrine tumors & adenocarcinomas of pancreas, gastrointestinal tract, and lung
    , 2020
    Co-Authors: Theodore S Chang, Lacy S Brame, Qing Yang, Kyle A Rogers, Kar Ming Fung

    Abstract:

    Human aldo-keto reductase family 1 member C3 (AKR1C3) was initially identified as an enzyme in reduc – ing 5α-dihydrotestosterone (5α-DHT) to 5α-androstane-3α, 17β-diol (3α-diol) and oxidizing 3α-diol to androsterone. It was subsequently demonstrated to possess ketosteroid reductase activity in metabolizing other steroids including estrogen and progesterone, 11-ketoprostaglandin reductase activity in metabolizing prostaglandins, and dihydrodiol dehydrogenase x (DDx) activity in metabolizing xenobiotics. AKR1C3 was demonstrated in sex hormone-dependent tissues including testis, breast, endometrium, and prostate; in sex hormone-independent tissues including kidney and urothelium. Our previous study described the expression of AKR1C3 in squamous cell carcinoma and ad- enocarcinoma but not in small cell carcinoma. In this report, we studied the expression of AKR1C3 in normal tis- sue, adenocarcinomas (43 cases) and neuroendocrine (NE) tumors (40 cases) arising from the aerodigestive tract and pancreas. We demonstrated wide expression of AKR1C3 in superficially located mucosal cells, but not in NE cells. AKR1C3-positive immunoreactivity was detected in 38 cases (88.4%) of adenocarcinoma, but only in 7 cases (17.5%) of NE tumors in all cases. All NE tumors arising from the pancreas and appendix and most tumors from the colon and lung were negative. The highest ratio of positive AKR1C3 in NE tumors was found in tumors arising from the small intestine (50%). These results raise the question of AKR1C3‘s role in the biology of normal mucosal epithelia and tumors. In addition, AKR1C3 may be a useful adjunct marker for the exclusion of the NE phenotype in diagnostic pathology.

  • Expression of aldo-keto reductase family 1 member C3 (AKR1C3) in neuroendocrine tumors & adenocarcinomas of pancreas, gastrointestinal tract, and lung.
    International Journal of Clinical and Experimental Pathology, 2013
    Co-Authors: Theodore S Chang, Lacy S Brame, Qing Yang, Kyle A Rogers, Kar Ming Fung

    Abstract:

    Human aldo-keto reductase family 1 member C3 (AKR1C3) was initially identified as an enzyme in reducing 5α-dihydrotestosterone (5α-DHT) to 5α-androstane-3α, 17β-diol (3α-diol) and oxidizing 3α-diol to androsterone. It was subsequently demonstrated to possess ketosteroid reductase activity in metabolizing other steroids including estrogen and progesterone, 11-ketoprostaglandin reductase activity in metabolizing prostaglandins, and dihydrodiol dehydrogenase x (DDx) activity in metabolizing xenobiotics. AKR1C3 was demonstrated in sex hormone-dependent tissues including testis, breast, endometrium, and prostate; in sex hormone-independent tissues including kidney and urothelium. Our previous study described the expression of AKR1C3 in squamous cell carcinoma and adenocarcinoma but not in small cell carcinoma. In this report, we studied the expression of AKR1C3 in normal tissue, adenocarcinomas (43 cases) and neuroendocrine (NE) tumors (40 cases) arising from the aerodigestive tract and pancreas. We demonstrated wide expression of AKR1C3 in superficially located mucosal cells, but not in NE cells. AKR1C3-positive immunoreactivity was detected in 38 cases (88.4%) of adenocarcinoma, but only in 7 cases (17.5%) of NE tumors in all cases. All NE tumors arising from the pancreas and appendix and most tumors from the colon and lung were negative. The highest ratio of positive AKR1C3 in NE tumors was found in tumors arising from the small intestine (50%). These results raise the question of AKR1C3’s role in the biology of normal mucosal epithelia and tumors. In addition, AKR1C3 may be a useful adjunct marker for the exclusion of the NE phenotype in diagnostic pathology.

  • expression of aldo keto reductase family 1 member c3 AKR1C3 in neuroendocrine tumors adenocarcinomas of pancreas gastrointestinal tract and lung
    International Journal of Clinical and Experimental Pathology, 2013
    Co-Authors: Theodore S Chang, Lacy S Brame, Qing Yang, Kyle A Rogers, Kar Ming Fung

    Abstract:

    Human aldo-keto reductase family 1 member C3 (AKR1C3) was initially identified as an enzyme in reducing 5α-dihydrotestosterone (5α-DHT) to 5α-androstane-3α, 17β-diol (3α-diol) and oxidizing 3α-diol to androsterone. It was subsequently demonstrated to possess ketosteroid reductase activity in metabolizing other steroids including estrogen and progesterone, 11-ketoprostaglandin reductase activity in metabolizing prostaglandins, and dihydrodiol dehydrogenase x (DDx) activity in metabolizing xenobiotics. AKR1C3 was demonstrated in sex hormone-dependent tissues including testis, breast, endometrium, and prostate; in sex hormone-independent tissues including kidney and urothelium. Our previous study described the expression of AKR1C3 in squamous cell carcinoma and adenocarcinoma but not in small cell carcinoma. In this report, we studied the expression of AKR1C3 in normal tissue, adenocarcinomas (43 cases) and neuroendocrine (NE) tumors (40 cases) arising from the aerodigestive tract and pancreas. We demonstrated wide expression of AKR1C3 in superficially located mucosal cells, but not in NE cells. AKR1C3-positive immunoreactivity was detected in 38 cases (88.4%) of adenocarcinoma, but only in 7 cases (17.5%) of NE tumors in all cases. All NE tumors arising from the pancreas and appendix and most tumors from the colon and lung were negative. The highest ratio of positive AKR1C3 in NE tumors was found in tumors arising from the small intestine (50%). These results raise the question of AKR1C3’s role in the biology of normal mucosal epithelia and tumors. In addition, AKR1C3 may be a useful adjunct marker for the exclusion of the NE phenotype in diagnostic pathology.

Joseph Azzarello – 3rd expert on this subject based on the ideXlab platform

  • elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell mediated endothelial cell tube formation implications for prostate cancer progressioan
    BMC Cancer, 2010
    Co-Authors: Mikhail G Dozmorov, Kar Ming Fung, Joseph Azzarello, Qing Yang, Jonathan D Wren, Jeffrey S Davis, Robert E Hurst, Daniel J Culkin, T M Penning

    Abstract:

    Background
    Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression.

  • expression of AKR1C3 in renal cell carcinoma papillary urothelial carcinoma and wilms tumor
    International Journal of Clinical and Experimental Pathology, 2010
    Co-Authors: Joseph Azzarello, T M Penning, Daniel J Culkin, Bradley P Kropp, Awet Gherezghiher, Vladislav Zakharov, Zhongxin Yu, Kar Ming Fung

    Abstract:

    Human aldo-keto reductase (AKR) 1C3 is a monomeric cytoplasmic multifunctional enzyme that reduces ketosteroids, ketoprostaglandins, and lipid aldehydes. AKR1C3 was initially identified as an enzyme involved in steroid metabolism. However, immunohistochemistry has demonstrated AKR1C3 in normal adult kidneys with expression in Bowman’ capsule, the mesangial cells, proximal and distal tubules, as well as mature urothelial epithelium. The significance of its spatial distribution and metabolic activities in the kidney remains undefined. In addition to its ability to catalyze steroid hormones (including androgen, desoxycorticosterone, and progesterone) and involvement in prostaglandins metabolism, we suspect that AKR1C3 may function as a chemical barrier in the renal tubules for normal function in mature kidneys. Moreover, AKR1C3 may represent a developmental marker for some urological epithelial tissues. In this study, we demonstrate widespread expression of AKR1C3 in renal neoplasms with a phenotype recapitulating mature kidney (i.e., renal cell carcinoma) and urothelium also known as transitional epithelium (i.e., papillary urothelial carcinoma), but noted limited AKR1C3 expression in renal neoplasms with a phenotype recapitulating embryonic kidneys (i.e., Wilms’ tumor). Our results suggest that AKR1C3 may represent a developmental marker that is related to renal epithelium maturity.

  • Suppressed expression of type 2 3α/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) in endometrial hyperplasia and carcinoma
    International Journal of Clinical and Experimental Pathology, 2010
    Co-Authors: Vladislav Zakharov, Trevor M. Penning, Joseph Azzarello, Scott Mcmeekin, Kathleen N Moore, Kar Ming Fung

    Abstract:

    The diagnosis of endometrial hyperplasia and endometrial type adenocarcinoma arising within the uterine cavity has long been rested on morphologic criteria. Although distinction between normal endometrial epithelium from adenocarcinoma is usually straightforward, the separation between normal and hyperplastic endometrium, particularly those cases without atypia, can be a diagnostic challenge. The same is true in separation of hyperplastic endometrium with atypia from endometrial-type endometrial adenocarcinoma. Type 2 3α-/type 5 17β-hydroxysteroid dehydrogenase (HSD) (AKR1C3) is a multifunctional enzyme involved in androgen, estrogen, progesterone, and pros-taglandin metabolism. Its expression has been shown in the epithelium of the renal tubules, urothelial epithelium, and endothelial cells in normal tissues as well as in prostatic adenocarcinoma. The proliferation and maintenance of endometrial epithelium is dependent on both estrogen and progesterone; and AKR1C3-mediated steroid metabolism may play a critical role in the maintenance of viable normal and abnormal endometrial epithelium. We studied the expression of AKR1C3 in 33 endometrial biopsy specimens including 13 cases of normal proliferative endometrium, 8 cases of hyperplastic endometrium with and without atypia, and 12 cases of primary endometrial adenocarcinoma of endometrial type. We demonstrated a uniform, diffuse, and strong expression of AKR1C3 in normal endometrial epithelium but not in endometrial stromal cells. In contrast, the expression of AKR1C3 is reduced in both hyperplastic and carcinomatous endometrial epithelium. These findings suggest that AKR1C3 may play important roles in the physiology of endometrial cells and that suppressed AKR1C3 expression may represent a feature that allows differentiation of hyperplastic and neoplastic endometrial epithelium from normal endometrial epithelium. However, reduced AKR1C3 expression cannot distinguish hyperplastic endometrium from endometrial adenocarcinoma of endometrial type. The biologic and pathological roles of AKR1C3 in endometrial epithelium require further investigation.