Asio

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2472 Experts worldwide ranked by ideXlab platform

Seung Woo Hong - One of the best experts on this subject based on the ideXlab platform.

  • optical coherence tomography optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Ping Wei, Marcelo T Nicolela
    Abstract:

    Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to the Bruch membrane opening (BMO) (ASCO/BMO offset) to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design Cross-sectional study. Methods Using optical coherence tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids and size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes 264.3 ± 131.1 μm; healthy control subjects 89.0 ± 55.8 μm, P Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA, and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch s membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Marcelo T Nicolela, Jayme R Vianna
    Abstract:

    Abstract Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to Bruch’s membrane opening (BMO) (ASCO/BMO offset) in order to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design: Cross-sectional study. Methods Using Optic Coherence Tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids, size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes, 264.3 ± 131.1 um; healthy controls, 89.0 ± 55.8 um, p Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann
    Abstract:

    Purpose To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. Design Cross-sectional study. Methods After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. Results Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P Conclusions ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

Christy Hardin - One of the best experts on this subject based on the ideXlab platform.

  • optical coherence tomography optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Ping Wei, Marcelo T Nicolela
    Abstract:

    Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to the Bruch membrane opening (BMO) (ASCO/BMO offset) to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design Cross-sectional study. Methods Using optical coherence tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids and size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes 264.3 ± 131.1 μm; healthy control subjects 89.0 ± 55.8 μm, P Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA, and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch s membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Marcelo T Nicolela, Jayme R Vianna
    Abstract:

    Abstract Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to Bruch’s membrane opening (BMO) (ASCO/BMO offset) in order to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design: Cross-sectional study. Methods Using Optic Coherence Tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids, size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes, 264.3 ± 131.1 um; healthy controls, 89.0 ± 55.8 um, p Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann
    Abstract:

    Purpose To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. Design Cross-sectional study. Methods After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. Results Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P Conclusions ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

Stuart K. Gardiner - One of the best experts on this subject based on the ideXlab platform.

  • optical coherence tomography optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Ping Wei, Marcelo T Nicolela
    Abstract:

    Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to the Bruch membrane opening (BMO) (ASCO/BMO offset) to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design Cross-sectional study. Methods Using optical coherence tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids and size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes 264.3 ± 131.1 μm; healthy control subjects 89.0 ± 55.8 μm, P Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA, and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch s membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Marcelo T Nicolela, Jayme R Vianna
    Abstract:

    Abstract Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to Bruch’s membrane opening (BMO) (ASCO/BMO offset) in order to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design: Cross-sectional study. Methods Using Optic Coherence Tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids, size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes, 264.3 ± 131.1 um; healthy controls, 89.0 ± 55.8 um, p Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann
    Abstract:

    Purpose To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. Design Cross-sectional study. Methods After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. Results Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P Conclusions ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

Hongli Yang - One of the best experts on this subject based on the ideXlab platform.

  • optical coherence tomography optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Ping Wei, Marcelo T Nicolela
    Abstract:

    Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to the Bruch membrane opening (BMO) (ASCO/BMO offset) to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design Cross-sectional study. Methods Using optical coherence tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids and size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes 264.3 ± 131.1 μm; healthy control subjects 89.0 ± 55.8 μm, P Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA, and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct optic nerve head morphology in myopia i implications of anterior scleral canal opening versus bruch s membrane opening offset
    American Journal of Ophthalmology, 2020
    Co-Authors: Jin Wook Jeoung, Seung Woo Hong, Christy Hardin, Stuart K. Gardiner, Hongli Yang, Yaxing Wang, Brad Fortune, Michael J A Girard, Marcelo T Nicolela, Jayme R Vianna
    Abstract:

    Abstract Purpose To measure the magnitude and direction of anterior scleral canal opening (ASCO) offset relative to Bruch’s membrane opening (BMO) (ASCO/BMO offset) in order to characterize neural canal obliqueness and minimum cross-sectional area (NCMCA) in 69 highly myopic and 138 healthy, age-matched, control eyes. Design: Cross-sectional study. Methods Using Optic Coherence Tomography (OCT) scans of the optic nerve head (ONH), BMO and ASCO were manually segmented and their centroids, size and shape were calculated. ASCO/BMO offset magnitude and direction were measured after projecting the ASCO/BMO centroid vector onto the BMO plane. Neural canal axis obliqueness was defined as the angle between the ASCO/BMO centroid vector and the vector perpendicular to the BMO plane. NCMCA was defined by projecting BMO and ASCO points onto a plane perpendicular to the neural canal axis and measuring their overlapping area. Results ASCO/BMO offset magnitude was greater (highly myopic eyes, 264.3 ± 131.1 um; healthy controls, 89.0 ± 55.8 um, p Conclusions Our data suggest that increased temporal displacement of BMO relative to the ASCO, increased BMO and ASCO area, decreased NCMCA and increased neural canal obliqueness are characteristic components of ONH morphology in highly myopic eyes.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • OCT-Detected Optic Nerve Head Neural Canal Direction, Obliqueness, and Minimum Cross-Sectional Area in Healthy Eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann
    Abstract:

    Purpose To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. Design Cross-sectional study. Methods After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. Results Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P Conclusions ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

Christian Y Mardin - One of the best experts on this subject based on the ideXlab platform.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.

  • oct detected optic nerve head neural canal direction obliqueness and minimum cross sectional area in healthy eyes
    American Journal of Ophthalmology, 2019
    Co-Authors: Seung Woo Hong, Christy Hardin, Glen P. Sharpe, Stuart K. Gardiner, Shaban Demirel, Hongli Yang, Joseph Caprioli, Christopher A. Girkin, Jeffrey M. Liebmann, Christian Y Mardin
    Abstract:

    PURPOSE: To assess anterior scleral canal opening (ASCO) offset relative to Bruch's membrane opening (BMO) (ASCO/BMO offset) so as to determine neural canal direction, obliqueness, and minimum cross-sectional area (NCMCA) in 362 healthy eyes. DESIGN: Cross-sectional study. METHODS: After optical coherence tomography optic nerve head and retinal nerve fiber layer thickness (RNFLT) imaging, BMO and ASCO were manually segmented. Planes, centroids, size, and shape were calculated. Neural canal direction was defined by projecting the neural canal axis vector (connecting BMO and ASCO centroids) onto the BMO plane. Neural canal obliqueness was defined by the angle between the neural canal axis and the BMO plane perpendicular vector. NCMCA was defined by projecting BMO and ASCO points onto a neural canal axis perpendicular plane and measuring the area of overlap. The angular distance between superior and inferior peak RNFLT was measured, and correlations between RFNLT, BMO, ASCO, ASCO/BMO offset, and NCMCA were assessed. RESULTS: Mean (SD) NCMCA was significantly smaller than either the BMO or ASCO area (1.33 (0.42), 1.82 (0.38), 2.22 (0.43) mm2, respectively), and most closely correlated to RNFLT (P < .001, R2 = 0.158). Neural canal direction was most commonly superior-nasal (55%). Mean neural canal obliqueness was 39.4° (17.3°). The angular distance between superior and inferior peak RNFLT correlated to neural canal direction (P ≤ .008, R2 = 0.093). CONCLUSIONS: ASCO/BMO offset underlies neural canal direction, obliqueness, and NCMCA. RNFLT is more strongly correlated to NCMCA than to BMO or ASCO, and its peripapillary distribution is influenced by neural canal direction.