Aspen Hysys

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3267 Experts worldwide ranked by ideXlab platform

I A Karimi - One of the best experts on this subject based on the ideXlab platform.

  • Simulation of a combined cycle gas turbine power plant in Aspen Hysys
    Energy Procedia, 2019
    Co-Authors: Zuming Liu, I A Karimi
    Abstract:

    Abstract A detailed model is developed in Aspen Hysys for simulating the operation of a triple-pressure reheat combined cycle gas turbine (CCGT) power plant. To our knowledge, this is the first such model in the literature. A comparison with an equivalent GateCycle model shows that the predictions of the two models (Aspen Hysys and GateCycle) are comparable. The average relative deviations for the power outputs and thermal efficiencies of the gas turbine, steam cycle, and CCGT plant are less than 2.0%. The minor discrepancies are primarily from the differences in gas enthalpy correlations. On the other hand, Aspen Hysys may have some advantages over GateCycle. First, its use of the well-proven real-gas Peng-Robinson fluid package may give more accurate predictions. Second, it allows easy integration with various energy systems such as CO2 capture, organic Rankine cycles, fuel cells, LNG terminals, air separation, absorption chillers, etc. Third, its model can be made dynamic for predicting the real-time behaviour of a CCGT plant.

  • simulating combined cycle gas turbine power plants in Aspen Hysys
    Energy Conversion and Management, 2018
    Co-Authors: Zuming Liu, I A Karimi
    Abstract:

    Abstract Combined cycle gas turbine (CCGT) power plants are becoming increasingly important for electricity generation. Enhancing their thermal performance is essential for mitigating carbon emissions. This paper aims to present a methodology for simulating the off-design operation of a triple-pressure reheat CCGT plant in Aspen Hysys. The modeling equations that rigorously capture the full off-design characteristics of various plant components (i.e. compressor, combustor, turbine, heat recovery steam generator, and steam turbines) are implemented in Aspen Hysys, and a specially tailored procedure is proposed for solving them. The modeling strategy and solution procedure can be extended to simulate the off-design operation of any CCGT plants and are generically applicable to other process simulators (e.g. Aspen Plus, Unisim, and Pro II). To evaluate the model’s performance, its predictions are compared with those of an equivalent model from GateCycle. The results show the predictions of the two models (Aspen Hysys and GateCycle) agree well. The average differences for the power outputs and thermal efficiencies of the gas turbine, steam cycle, and CCGT plant are less than 2.0%, 1.5%, and 0.6%, respectively. Besides, the differences arise primarily from the different gas enthalpy calculations. Since the model enables easy integration with various energy systems and can be made dynamic for predicting real-time behavior in Aspen Hysys, it is very useful with wide applications.

Zuming Liu - One of the best experts on this subject based on the ideXlab platform.

  • Simulation of a combined cycle gas turbine power plant in Aspen Hysys
    Energy Procedia, 2019
    Co-Authors: Zuming Liu, I A Karimi
    Abstract:

    Abstract A detailed model is developed in Aspen Hysys for simulating the operation of a triple-pressure reheat combined cycle gas turbine (CCGT) power plant. To our knowledge, this is the first such model in the literature. A comparison with an equivalent GateCycle model shows that the predictions of the two models (Aspen Hysys and GateCycle) are comparable. The average relative deviations for the power outputs and thermal efficiencies of the gas turbine, steam cycle, and CCGT plant are less than 2.0%. The minor discrepancies are primarily from the differences in gas enthalpy correlations. On the other hand, Aspen Hysys may have some advantages over GateCycle. First, its use of the well-proven real-gas Peng-Robinson fluid package may give more accurate predictions. Second, it allows easy integration with various energy systems such as CO2 capture, organic Rankine cycles, fuel cells, LNG terminals, air separation, absorption chillers, etc. Third, its model can be made dynamic for predicting the real-time behaviour of a CCGT plant.

  • simulating combined cycle gas turbine power plants in Aspen Hysys
    Energy Conversion and Management, 2018
    Co-Authors: Zuming Liu, I A Karimi
    Abstract:

    Abstract Combined cycle gas turbine (CCGT) power plants are becoming increasingly important for electricity generation. Enhancing their thermal performance is essential for mitigating carbon emissions. This paper aims to present a methodology for simulating the off-design operation of a triple-pressure reheat CCGT plant in Aspen Hysys. The modeling equations that rigorously capture the full off-design characteristics of various plant components (i.e. compressor, combustor, turbine, heat recovery steam generator, and steam turbines) are implemented in Aspen Hysys, and a specially tailored procedure is proposed for solving them. The modeling strategy and solution procedure can be extended to simulate the off-design operation of any CCGT plants and are generically applicable to other process simulators (e.g. Aspen Plus, Unisim, and Pro II). To evaluate the model’s performance, its predictions are compared with those of an equivalent model from GateCycle. The results show the predictions of the two models (Aspen Hysys and GateCycle) agree well. The average differences for the power outputs and thermal efficiencies of the gas turbine, steam cycle, and CCGT plant are less than 2.0%, 1.5%, and 0.6%, respectively. Besides, the differences arise primarily from the different gas enthalpy calculations. Since the model enables easy integration with various energy systems and can be made dynamic for predicting real-time behavior in Aspen Hysys, it is very useful with wide applications.

Geraldo Cakrawala Herman - One of the best experts on this subject based on the ideXlab platform.

  • analisis heat losses dan pressure drops pada sistem pemipaan panas bumi terhadap daya masukan turbin dengan simulasi software Aspen Hysys di pt geo dipa energi persero unit patuha
    eProceedings of Engineering, 2020
    Co-Authors: Geraldo Cakrawala Herman
    Abstract:

    Abstrak Heat losses dan Pressure drop merupakan hal umum yang terjadi pada sistem pemipaan, ini disebabkan karena beberapa hal. Diantaranya aliran fluida yang mengalir pada sistem pemipaan akan gesekan di sepanjang permukaan pipa dan juga ketika melewati beberapa sambungan pipa, belokan, katup dan komponen lainnya yang terpasang pada sistem pemipaan. Uap yang mengalir pada sistem pemipaan harus dijaga temperatur dan tekanannya agar tidak terjadi kondensasi karena dapat menurunkan entalpi sehingga daya masukan ke turbin akan berkurang. Sistem pemipaan dilapisi dengan insulasi yang berfungsi untuk menjaga terjadinya perpindahan panas dari uap yang keluar dari dalam pipa menuju lingkungan, maka insulasi pada sistem pemipaan harus diperhatikan apakah sudah memiliki konduktifitas thermal yang rendah atau belum. Analisa ini dilakukan dengan menggunakan simulasi software Aspen Hysys dengan terlebih dahulu mengumpulkan data parameter pipa dan parameter fluida dari masing masing sumur produksi. Analisa yang dilakukan adalah variasi ukuran diameter pipa dan variasi bahan insulasi. Hasil yang didapatkan setelah melakukan simulasi yaitu ternyata Heat losses dan Pressure Drop mempengaruhi daya masukan turbin sehingga dapat menurunkan potensi produksi energi listrik. Model simulasi yang dapat digunakan sebagai alternatif yaitu penggantian bahan insulasi pipa menjadi cotton wool dengan konduktifitas thermal sebesar 0,029 W/mK dan pembesaran diameter pipa menjadi 24” sehingga mendapatkan peningkatan produksi uap sebesar 46.748 watt dan 10.284 watt untuk energi listrik pada jalur setelah SUMUR 5 east line, pembesaran diameter menjadi 32” sehingga mendapatkan peningkatan produksi uap sebesar 62.191 watt dan 13.682 watt untuk energi listrik pada seluruh west line

  • Analisis Heat Losses Dan Pressure Drops Pada Sistem Pemipaan Panas Bumi Terhadap Daya Masukan Turbin Dengan Simulasi Software Aspen Hysys Di PT Geo Dipa Energi (Persero) Unit Patuha
    Universitas Telkom S1 Teknik Fisika, 2020
    Co-Authors: Geraldo Cakrawala Herman
    Abstract:

    Heat losses dan Pressure drop merupakan hal umum yang terjadi pada sistem pemipaan, ini disebabkan karena beberapa hal. Diantaranya aliran fluida yang mengalir pada sistem pemipaan akan gesekan di sepanjang permukaan pipa dan juga ketika melewati beberapa sambungan pipa, belokan, katup dan komponen lainnya yang terpasang pada sistem pemipaan. Uap yang mengalir pada sistem pemipaan harus dijaga temperatur dan tekanannya agar tidak terjadi kondensasi karena dapat menurunkan entalpi sehingga daya masukan ke turbin akan berkurang. Sistem pemipaan dilapisi dengan insulasi yang berfungsi untuk menjaga terjadinya perpindahan panas dari uap yang keluar dari dalam pipa menuju lingkungan, maka insulasi pada sistem pemipaan harus diperhatikan apakah sudah memiliki konduktifitas thermal yang rendah atau belum. Analisa ini dilakukan dengan menggunakan simulasi software Aspen Hysys dengan terlebih dahulu mengumpulkan data parameter pipa dan parameter fluida dari masing masing sumur produksi. Analisa yang dilakukan adalah variasi ukuran diameter pipa dan variasi bahan insulasi. Hasil yang didapatkan setelah melakukan simulasi yaitu ternyata Heat losses dan Pressure Drop mempengaruhi daya masukan turbin sehingga dapat menurunkan potensi produksi energi listrik. Model simulasi yang dapat digunakan sebagai alternatif yaitu penggantian bahan insulasi pipa menjadi cotton wool dengan konduktifitas thermal sebesar 0,029 W/mK dan pembesaran diameter pipa menjadi 24” sehingga mendapatkan peningkatan produksi uap sebesar 46.748 watt dan 10.284 watt untuk energi listrik pada jalur setelah SUMUR 5 east line, pembesaran diameter menjadi 32” sehingga mendapatkan peningkatan produksi uap sebesar 62.191 watt dan 13.682 watt untuk energi listrik pada seluruh west line. Kata Kunci: Heat losses, Pressure Drop, Aliran Fluida, Entalpi, Konduktifitas Thermal, Daya

Erik Thomassen - One of the best experts on this subject based on the ideXlab platform.

  • Optimization of Configurations for Amine based CO2 Absorption Using Aspen Hysys
    Energy Procedia, 2014
    Co-Authors: Terje Bråthen, Christian Berg, Sven Ketil Brekne, Marius Flatin, Ronny Johnsen, Iselin Grauer Moen, Erik Thomassen
    Abstract:

    Abstract The drawback with an absorption based CO 2 capture process is the large heat consumption needed for desorption. Different absorption and desorption configurations for 85% amine based CO 2 removal from a natural gas based power plant have been simulated using Aspen Hysys. A standard process, split-stream, vapour recompression and different combinations thereof have been simulated. The simulations have been used as a basis for equipment dimensioning, cost estimation and process optimization. Of the evaluated cases, a simple vapour recompression case has been calculated to be the most cost optimum configuration.

Fawzi Banat - One of the best experts on this subject based on the ideXlab platform.

  • Design and Development of a Small Multistage Flash Desalination System Using Aspen Hysys
    Volume 2: Computational Fluid Dynamics, 2019
    Co-Authors: M.d. Islam, Fawzi Banat, A. Baba, S. Abuyahya
    Abstract:

    Abstract Fresh water demands are increasing day by day because of growing population, industrialization, and increased living standards. Desalination technology has become a significant solution of fresh drinking water for many parts of the world. Lack of fresh water resources in dry environments has encouraged the establishment of desalination processes and developed technology to compensate for water scarcity. The MSF (multistage flash) desalination technique has received wide spread acceptance due to low temperature heat source (waste heat/inexpensive energy), simple construction high process reliability and simple maintenance. MSF typically has the highest water production cost among available desalination technologies, which can be reduced with using solar energy/co-generation. Since Abu Dhabi is in the solar belt region and is blessed with huge solar energy, MSF desalination can be powered by solar power in addition to industrial waste/fossil fuel energy, which will significantly reduce the cost as well as carbon, footprint. In this research, multistage flash desalination is modelled using Aspen Hysys package V8. We have designed each components of the system, mostly heating source, vacuum/flash chambers, heat exchangers and developed the whole system. Some parametric study, i.e. feed rate, top brine temperature, heat input, pressure, productivity etc. of multistage flash desalination system has been conducted in this research. Two case studies have been conducted and found a relation between feed flow rate and water production rate as well as chamber pressure with vapor formation. This design will help to build the pilot plant, do experimental test and validate the model.

  • Sweetening liquefied petroleum gas (LPG): Parametric sensitivity analysis using Aspen Hysys
    Journal of Natural Gas Science and Engineering, 2015
    Co-Authors: Hanan Jalal Qeshta, Salaheddin Abuyahya, Fawzi Banat
    Abstract:

    Abstract The current investigation aims at studying LPG sweetening process using tertiary alkanolamine (methyldiethanolamine; MDEA) by Aspen Hysys version 8.0. Design criteria were explained for sweetening LPGs including MDEA concentration, mass flow rate, circulation rate etc. The effects of operating parameters such as temperature and pressure on the proposed process were also studied. A steady state model was developed for determining the sensitivity of parameters affecting the process. The most suited feed LPG temperature was determined to be 45 °C. The optimum MDEA concentration and flow rate was found to be 35.0 wt% and 24.43 m 3 /h, respectively. The parameters which indirectly affect the extraction process such as reboiler operating pressure, rich MDEA temperature, reflux ratio and boilup ratio were also determined.