Astatine 211

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 993 Experts worldwide ranked by ideXlab platform

Michael R Zalutsky - One of the best experts on this subject based on the ideXlab platform.

  • Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: radiolabeling and preliminary evaluation.
    Nuclear medicine and biology, 2017
    Co-Authors: Jaeyeon Choi, Choong Mo Kang, Eftychia Koumarianou, Ganesh Vaidyanathan, Michael R Zalutsky
    Abstract:

    INTRODUCTION: Derived from heavy chain only camelid antibodies, ~15-kDa single-domain antibody fragments (sdAbs) are an attractive platform for developing molecularly specific imaging probes and targeted radiotherapeutics. The rapid tumor accumulation and normal tissue clearance of sdAbs might be ideal for use with 211At, a 7.2-h half-life alpha-emitter, if appropriate labeling chemistry can be devised to trap 211At in cancer cells after sdAb binding. This study evaluated two reagents, [211At]SAGMB and iso-[211At]SAGMB, for this purpose. METHODS: [211At]SAGMB and iso-[211At]SAGMB, and their radioiodinated analogues [131I]SGMIB and iso-[131I]SGMIB, were synthesized by halodestannylation and reacted with the anti-HER2 sdAb 5F7. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label internalization assays on HER2-expressing BT474M1 breast carcinoma cells directly compared [131I]SGMIB-5F7/[211At]SAGMB-5F7 and iso-[131I]SGMIB-5F7/iso-[211At]SAGMB-5F7 tandems. The biodistribution of the two tandems was evaluated in SCID mice with subcutaneous BT474M1 xenografts. RESULTS: Radiochemical yields for Boc2-iso-[211At]SAGMB and Boc2-[211At]SAGMB synthesis, and efficiencies for coupling of iso-[211At]SAGMB and [211At]SAGMB to 5F7 were similar, with radiochemical purities of [211At]SAGMB-5F7 and iso-[211At]SAGMB-5F7 >98%. iso-[211At]SAGMB-5F7 and [211At]SAGMB-5F7 had immunoreactive fractions >80% and HER2 binding affinities of less than 5 nM. Internalization assays demonstrated high intracellular trapping of radioactivity, with little difference observed between corresponding 211At- and 131I-labeled 5F7 conjugates. Higher BT474M1 intracellular retention was observed from 1-6 h for the iso-conjugates (iso-[211At]SAGMB-5F7, 74.3 +/- 2.8%, vs. [211At]SAGMB-5F7, 63.7 +/- 0.4% at 2 h) with the opposite behavior observed at 24 h. Peak tumor uptake for iso-[211At]SAGMB-5F7 was 23.4 +/- 2.2% ID/g at 4 h, slightly lower than its radioiodinated counterpart, but significantly higher than observed with [211At]SAGMB-5F7. Except in kidneys and lungs, tumor-to-normal organ ratios for iso-[211At]SAGMB-5F7 were greater than 10:1 by 2 h, and significantly higher than those for [211At]SAGMB-5F7. CONCLUSION: These 211At-labeled sdAb conjugates, particularly iso-[211At]SAGMB-5F7, warrant further evaluation for targeted alpha-particle radiotherapy of HER2-expressing cancers.

  • production of Astatine 211 at the duke university medical center for its regional distribution
    2016
    Co-Authors: Michael R Zalutsky
    Abstract:

    Systemic targeted radiation therapy and radioimmunotherapy continue to be important tools in the treatment of certain cancers. Because of their high energy and short path length, alpha particle emitters such as 211At are more effective than either external beam x- ray or in vivo beta radiation in delivering potentially curative doses of radiation. The limited clinical trials that have been conducted to date have yielded encouraging responses in some patients, e.g., malignant brain tumors. In order to escalate the additional necessary research and development in radiochemistry, radiobiology and efficacy evaluation of alpha particle radiotherapeutics, it is universally agreed that access to an affordable, reliable supply of 211At is warranted. In conjunction with the Department of Energy's intent to enhance stable and radioactive isotope availability for research applications, it is the primary objective of this project to improve 211At production and purification capabilities at Duke so that this radionuclide can be supplied to researchers at other institutions throughout the US.The most widely used 211At production method involves the α,2n reaction on Bismuth using a cyclotron with beams ≤ 28 MeV. Yields can be enhanced with use of an internal target that allows for a higher alpha fluence plus efficient heat dissipationmore » in the target. Both of these items are in place at Duke; however, in order to support production for multi-institutional use, irradiation campaigns in excess of 50 µAp and four hours duration will be needed. Further, post-irradiation processing equipment is lacking that will enable the distribution process. Financial support is sought for i) a shielded, ventilated processing/containment hood; ii) development of a post-irradiation target retrieval system; iii) fabrication of a 211At distillation and recovery module and iv) a performance review and, where needed, an enhancement of seven major subsystems that comprise the CS-30 Cyclotron. With these modifications in place, routine production of ≥200 mCi of At-211 should be readily achievable, given our methodological development of At-211 target preparation, internal target irradiation and dry distillation to recover the radionuclide.« less

  • Astatine 211 radiochemistry the development of methodologies for high activity level radiosynthesis
    2012
    Co-Authors: Michael R Zalutsky
    Abstract:

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in Astatinemore » radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted radiotherapeutics currently is a daunting task. Our central hypothesis is that improvements in 211At radiochemistry are critically dependent on gaining an understanding of and compensating for the effects of radiolysis induced by 211At {alpha}-particles. Because of the widespread interest in labeling antibodies, antibody fragments and peptides with 211At, our proposed work plan will initially focus on reagents that we have developed for this purpose. Part of our strategy is the use of synthetic precursors immobilized on polymeric resins or perfluorous and triarylphosphonium supports. Their use could eliminate the need for a purification step to separate unreacted tin precursor from labeled product and hopefully provide a simple kit technology that could be utilized at other institutions. The specific aims of this project are: (1) To optimze methods for 211At production and isolation of 211At from cyclotron targets; (2) To develop convenient and reproducible methodologies for high activity level and high specific activity radiohalogenation of biomolecules with 211At; (3) to develop a procedure for extending the shelf-life of 211At beyond a few hours so that this radionuclide can be utilized at centers remote from its site of production; and (4) to work out high activity level synthesis methods for utilizing support immobilized tin precursors for 211At labeling. If we are successful in achieving our goals, the radiochemical methodologies that are developed could greatly facilitate the use of 211At-labeled targeted cancer therapeutics in patients, even at institutions that are distant from the few sites currently available for 211At production.« less

  • Astatine-211: production and availability.
    Current radiopharmaceuticals, 2011
    Co-Authors: Michael R Zalutsky, Marek Pruszynski
    Abstract:

    The 7.2-h half life radiohalogen (211)At offers many potential advantages for targeted α-particle therapy; however, its use for this purpose is constrained by its limited availability. Astatine-211 can be produced in reasonable yield from natural bismuth targets via the (209)Bi(α,2n)(211)At nuclear reaction utilizing straightforward methods. There is some debate as to the best incident α-particle energy for maximizing 211At production while minimizing production of (210)At, which is problematic because of its 138.4-day half life α-particle emitting daughter, (210)Po. The intrinsic cost for producing (211)At is reasonably modest and comparable to that of commercially available (123)I. The major impediment to (211)At availability is attributed to the need for a medium energy α-particle beam for its production. On the other hand, there are about 30 cyclotrons in the world that have the beam characteristics required for (211)At production.

  • Astatine radiopharmaceuticals prospects and problems
    Current Radiopharmaceuticals, 2008
    Co-Authors: Ganesan Vaidyanathan, Michael R Zalutsky
    Abstract:

    For the treatment of minimum residual diseases such micrometastases and residual tumor margins that remain after debulking of the primary tumor, targeted radiotherapy using radiopharmaceuticals tagged with alpha-particle-emitting radionuclides is very attractive. In addition to the their short range in tissue, which helps minimize harmful effects on adjacent normal tissues, alpha-particles, being high LET radiation, have several radiobiological advantages. The heavy halogen, Astatine-211 is one of the prominent alpha-particle-emitting radionuclides in practice. Being a halogen, it can often be incorporated into biomolecules of interest by adapting radioiodination chemistry. A wide spectrum of compounds from the simple [(211)At]astatide ion to small organic molecules, peptides, and large proteins labeled with (211)At have been investigated with at least two reaching the stage of clinical evaluation. The chemistry, cytotoxic advantages, biodistribution studies, and microdosimetry/pharmacokinetic modeling of some of these agents will be reviewed. In addition, potential problems such as the harmful effect of radiolysis on the synthesis, lack of sufficient in vivo stability of astatinated compounds, and possible adverse effects when they are systemically administered will be discussed.

Donald K Hamlin - One of the best experts on this subject based on the ideXlab platform.

  • addition of Astatine 211 labeled anti cd45 antibody to tbi as conditioning for dla identical marrow transplantation a novel strategy to overcome graft rejection in a canine presensitization model radioimmunotherapy to overcome transfusion induced sensitization
    Transplantation and Cellular Therapy Official Publication of the American Society for Transplantation and Cellular Therapy, 2021
    Co-Authors: Aya Nakaya, Erlinda B. Santos, Donald K Hamlin, Brenda M Sandmaier, Rainer Storb, Scott D Wilbur, Huiying Qiu
    Abstract:

    ABSTRACT In a canine model of presensitization using donor blood transfusions, 100% of historical control dogs receiving 9.2 Gy total body irradiation (TBI) conditioning before dog leukocyte antigen (DLA)-identical marrow grafts had graft rejection. In this presensitization model, we investigated whether the addition of monoclonal antibody (mAb)-based targeted radioimmunotherapy (RIT) with Astatine-211 (211At) to TBI could overcome graft rejection. 211At is an alpha-particle-emitting isotope that has a short path length, very high energy, and a short t½ of 7.2 hours, which allowed targeting radiation to the T cells responsible for graft rejection. Normal canine recipients were given three preceding transfusions of unirradiated whole blood on days –24, –17, and –10 before transplant from their DLA-identical marrow donors. 211At-anti-CD45 mAb was administered on day –3, and TBI followed by marrow grafts on day 0. Six of the 7 dogs (86%) achieved sustained engraftment as assessed by 100% donor chimerism in mononuclear cells, granulocytes, and CD3+ T cells. One dog receiving the lowest CD34+ cell content (0.35 × 106 cells/kg) rejected the graft. There were no late rejections in dogs followed up to 1 year. Graft-versus-host disease was seen in one dog. 211At-anti-CD45 mAb in combination with TBI as conditioning was successful in abrogating graft rejection in 86% of dogs in this presensitization model. 211At-anti-CD45 mAb conditioning with TBI may serve as a novel promising strategy to overcome graft rejection in heavily transfused patients with red cell disorders.

  • evaluation of radioiodinated protein conjugates and their potential metabolites containing lysine urea glutamate lug peg and closo decaborate 2 as models for targeting Astatine 211 to metastatic prostate cancer
    Nuclear Medicine and Biology, 2020
    Co-Authors: Mingkuan Chyan, Donald K Hamlin, Holly M Nguyen, Robert L Vessella, Scott D Wilbur
    Abstract:

    Abstract Introduction The use of lysine-urea-glutamate (LuG) for targeting the PSMA antigen on prostate cancer (PCa) is a promising method for delivering the alpha particle-emitting radionuclide Astatine-211 (211At) to metastatic PCa. High kidney localization has been a problem with radiolabeled LuG derivatives, but has been adequately addressed in radiometal-labeled DOTA-LuG derivatives by linker optimization. Herein, we report an investigation of an alternate approach to diminishing the kidney concentrations of radiolabeled LuG-containing compounds. Methods Our approach involves PEGylated LuG moieties and closo-decaborate (2-) moieties conjugated to streptavidin (SAv) or human serum albumin (HSA). After preparing the LuG conjugates, SAv and HSA conjugates were succinylated to decrease their kidney localization and radioiodinated for evaluation in athymic mice bearing C4-2B osseous PCa tumor xenografts. Results Covalently attaching LuG to succinylated SAv and HSA significantly reduced kidney localization, but unfortunately succinylation resulted in decreased tumor concentrations. In contrast, a potential metabolite [131I]16b, an unconjugated LuG derivative containing a dPEG4® linker, provided tumor concentrations of ~15% ID/g at 4 h pi. A second unconjugated LuG derivative with a similar structure, but containing a dPEG12® linker, [131I]16a had tumor concentrations of ~4%ID/g at 4 h pi. Those results suggest that long PEG linkers also affect tumor localization in a negative manner. Conclusion Conjugation of PEGylated LuG derivatives to proteins can be an effective approach to diminishing kidney localization of radiolabeled LuG reagents, but the protein, linker and the method of linkage need to be further studied. Additionally, modification of the unconjugated 16b to decrease kidney localization may provide PCa targeting agents for use with radiohalogens, including 211At. Advances in knowledge and implications for patient care: This study is the first to evaluate PEGylated LuG and closo-decaborate (2-) moieties conjugated to proteins as potential methods for diminishing the kidney concentrations of radiolabeled LuG-containing compounds.

  • development of an autonomous solvent extraction system to isolate Astatine 211 from dissolved cyclotron bombarded bismuth targets
    Scientific Reports, 2019
    Co-Authors: Matthew J Ohara, Anthony J. Krzysko, Eric F. Dorman, Donald K Hamlin, Scott D Wilbur
    Abstract:

    Cyclotron-produced Astatine-211 (211At) shows tremendous promise in targeted alpha therapy (TAT) applications due to its attractive half-life and its 100% α-emission from nearly simultaneous branched alpha decay. Astatine-211 is produced by alpha beam bombardment of naturally monoisotopic bismuth metal (209Bi) via the (α, 2n) reaction. In order to isolate the small mass of 211At (specific activity = 76 GBq·µg−1) from several grams of acid-dissolved Bi metal, a manual milliliter-scale solvent extraction process using diisopropyl ether (DIPE) is routinely performed at the University of Washington. As this process is complex and time consuming, we have developed a fluidic workstation that can perform the method autonomously. The workstation employs two pumps to concurrently deliver the aqueous and organic phases to a mixing tee and in-line phase mixer. The mixed phases are routed to a phase settling reservoir, where they gravity settle. Finally, each respective phase is withdrawn into its respective pump. However, development of a phase boundary sensor, placed in tandem with the phase settling reservoir, was necessary to communicate to the system when withdrawal of the denser aqueous phase was complete (i.e., the intersection of the two phases was located). The development and optimization of the autonomous solvent extraction system is described, and the 211At yields from several ~1.1 GBq-level 211At processing runs are reported.

  • investigation of a tellurium packed column for isolation of Astatine 211 from irradiated bismuth targets and demonstration of a semi automated system
    Scientific Reports, 2019
    Co-Authors: Donald K Hamlin, Mingkuan Chyan, Taylor M Morscheck, Maryline G Ferrier, Roger Wong, Scott D Wilbur
    Abstract:

    Astatine-211 is an attractive radionuclide for use in targeted alpha therapy of blood-borne diseases and micrometastatic diseases. Efficient isolation methods that can be adapted to robust automated 211At isolation systems are of high interest for improving the availability of 211At. Based on the early studies of Bochvarova and co-workers involving isolation of 211At from irradiated thorium targets, we developed a method for 211At isolation from bismuth targets using tellurium-packed columns. Dissolution of irradiated bismuth targets is accomplished using HNO3; however, 211At is not captured on the Te column material in this matrix. Our method involves slow addition of aqueous NH2OH·HCl to the Bi target dissolved in HNO3 to convert to a HCl matrix. The amount of NH2OH·HCl was optimized because (1) the quantity of NH2OH·HCl used appears to affect the radiolabeling yield of phenethyl-closo-decaborate(2-) (B10)-conjugated antibodies and (2) reducing the volume of NH2OH·HCl solution can effectively shorten the overall isolation time. A proof-of-concept semi-automated process has been demonstrated using targets containing ~0.96 GBq (~26 mCi) of 211At. High isolation yields (88–95%) were obtained. Radiochemical purity of the isolated 211At was assessed by radio-HPLC. Concentrations of Bi and Te contaminants in the 211At and the astatinated antibodies were evaluated using ICP-MS.

  • the α emitter Astatine 211 targeted to cd38 can eradicate multiple myeloma in a disseminated disease model
    Blood, 2019
    Co-Authors: Shyril Osteen, Yukang Lin, Aimee L. Kenoyer, Donald K Hamlin, Scott D Wilbur, Melissa L Comstock, Johnnie J Orozco, Jon Jones, Margaret E Nartea, Brian W Miller
    Abstract:

    Minimal residual disease (MRD) has become an increasingly prevalent and important entity in multiple myeloma (MM). Despite deepening responses to frontline therapy, roughly 75% of MM patients never become MRD-negative to ≤10-5, which is concerning because MRD-negative status predicts significantly longer survival. MM is highly heterogeneous, and MRD persistence may reflect survival of isolated single cells and small clusters of treatment-resistant subclones. Virtually all MM clones are exquisitely sensitive to radiation, and the α-emitter Astatine-211 (211At) deposits prodigious energy within 3 cell diameters, which is ideal for eliminating MRD if effectively targeted. CD38 is a proven MM target, and we conjugated 211At to an anti-CD38 monoclonal antibody to create an 211At-CD38 therapy. When examined in a bulky xenograft model of MM, single-dose 211At-CD38 at 15 to 45 µCi at least doubled median survival of mice relative to untreated controls (P 150 days) for 50% to 80% of mice, where all untreated mice died in 20 to 55 days (P < .0001). Treatment toxicities were transient and minimal. These data suggest that 211At-CD38 offers the potential to eliminate residual MM cell clones in low-disease-burden settings, including MRD. We are optimistic that, in a planned clinical trial, addition of 211At-CD38 to an autologous stem cell transplant (ASCT) conditioning regimen may improve ASCT outcomes for MM patients.

Scott D Wilbur - One of the best experts on this subject based on the ideXlab platform.

  • addition of Astatine 211 labeled anti cd45 antibody to tbi as conditioning for dla identical marrow transplantation a novel strategy to overcome graft rejection in a canine presensitization model radioimmunotherapy to overcome transfusion induced sensitization
    Transplantation and Cellular Therapy Official Publication of the American Society for Transplantation and Cellular Therapy, 2021
    Co-Authors: Aya Nakaya, Erlinda B. Santos, Donald K Hamlin, Brenda M Sandmaier, Rainer Storb, Scott D Wilbur, Huiying Qiu
    Abstract:

    ABSTRACT In a canine model of presensitization using donor blood transfusions, 100% of historical control dogs receiving 9.2 Gy total body irradiation (TBI) conditioning before dog leukocyte antigen (DLA)-identical marrow grafts had graft rejection. In this presensitization model, we investigated whether the addition of monoclonal antibody (mAb)-based targeted radioimmunotherapy (RIT) with Astatine-211 (211At) to TBI could overcome graft rejection. 211At is an alpha-particle-emitting isotope that has a short path length, very high energy, and a short t½ of 7.2 hours, which allowed targeting radiation to the T cells responsible for graft rejection. Normal canine recipients were given three preceding transfusions of unirradiated whole blood on days –24, –17, and –10 before transplant from their DLA-identical marrow donors. 211At-anti-CD45 mAb was administered on day –3, and TBI followed by marrow grafts on day 0. Six of the 7 dogs (86%) achieved sustained engraftment as assessed by 100% donor chimerism in mononuclear cells, granulocytes, and CD3+ T cells. One dog receiving the lowest CD34+ cell content (0.35 × 106 cells/kg) rejected the graft. There were no late rejections in dogs followed up to 1 year. Graft-versus-host disease was seen in one dog. 211At-anti-CD45 mAb in combination with TBI as conditioning was successful in abrogating graft rejection in 86% of dogs in this presensitization model. 211At-anti-CD45 mAb conditioning with TBI may serve as a novel promising strategy to overcome graft rejection in heavily transfused patients with red cell disorders.

  • evaluation of radioiodinated protein conjugates and their potential metabolites containing lysine urea glutamate lug peg and closo decaborate 2 as models for targeting Astatine 211 to metastatic prostate cancer
    Nuclear Medicine and Biology, 2020
    Co-Authors: Mingkuan Chyan, Donald K Hamlin, Holly M Nguyen, Robert L Vessella, Scott D Wilbur
    Abstract:

    Abstract Introduction The use of lysine-urea-glutamate (LuG) for targeting the PSMA antigen on prostate cancer (PCa) is a promising method for delivering the alpha particle-emitting radionuclide Astatine-211 (211At) to metastatic PCa. High kidney localization has been a problem with radiolabeled LuG derivatives, but has been adequately addressed in radiometal-labeled DOTA-LuG derivatives by linker optimization. Herein, we report an investigation of an alternate approach to diminishing the kidney concentrations of radiolabeled LuG-containing compounds. Methods Our approach involves PEGylated LuG moieties and closo-decaborate (2-) moieties conjugated to streptavidin (SAv) or human serum albumin (HSA). After preparing the LuG conjugates, SAv and HSA conjugates were succinylated to decrease their kidney localization and radioiodinated for evaluation in athymic mice bearing C4-2B osseous PCa tumor xenografts. Results Covalently attaching LuG to succinylated SAv and HSA significantly reduced kidney localization, but unfortunately succinylation resulted in decreased tumor concentrations. In contrast, a potential metabolite [131I]16b, an unconjugated LuG derivative containing a dPEG4® linker, provided tumor concentrations of ~15% ID/g at 4 h pi. A second unconjugated LuG derivative with a similar structure, but containing a dPEG12® linker, [131I]16a had tumor concentrations of ~4%ID/g at 4 h pi. Those results suggest that long PEG linkers also affect tumor localization in a negative manner. Conclusion Conjugation of PEGylated LuG derivatives to proteins can be an effective approach to diminishing kidney localization of radiolabeled LuG reagents, but the protein, linker and the method of linkage need to be further studied. Additionally, modification of the unconjugated 16b to decrease kidney localization may provide PCa targeting agents for use with radiohalogens, including 211At. Advances in knowledge and implications for patient care: This study is the first to evaluate PEGylated LuG and closo-decaborate (2-) moieties conjugated to proteins as potential methods for diminishing the kidney concentrations of radiolabeled LuG-containing compounds.

  • development of an autonomous solvent extraction system to isolate Astatine 211 from dissolved cyclotron bombarded bismuth targets
    Scientific Reports, 2019
    Co-Authors: Matthew J Ohara, Anthony J. Krzysko, Eric F. Dorman, Donald K Hamlin, Scott D Wilbur
    Abstract:

    Cyclotron-produced Astatine-211 (211At) shows tremendous promise in targeted alpha therapy (TAT) applications due to its attractive half-life and its 100% α-emission from nearly simultaneous branched alpha decay. Astatine-211 is produced by alpha beam bombardment of naturally monoisotopic bismuth metal (209Bi) via the (α, 2n) reaction. In order to isolate the small mass of 211At (specific activity = 76 GBq·µg−1) from several grams of acid-dissolved Bi metal, a manual milliliter-scale solvent extraction process using diisopropyl ether (DIPE) is routinely performed at the University of Washington. As this process is complex and time consuming, we have developed a fluidic workstation that can perform the method autonomously. The workstation employs two pumps to concurrently deliver the aqueous and organic phases to a mixing tee and in-line phase mixer. The mixed phases are routed to a phase settling reservoir, where they gravity settle. Finally, each respective phase is withdrawn into its respective pump. However, development of a phase boundary sensor, placed in tandem with the phase settling reservoir, was necessary to communicate to the system when withdrawal of the denser aqueous phase was complete (i.e., the intersection of the two phases was located). The development and optimization of the autonomous solvent extraction system is described, and the 211At yields from several ~1.1 GBq-level 211At processing runs are reported.

  • investigation of a tellurium packed column for isolation of Astatine 211 from irradiated bismuth targets and demonstration of a semi automated system
    Scientific Reports, 2019
    Co-Authors: Donald K Hamlin, Mingkuan Chyan, Taylor M Morscheck, Maryline G Ferrier, Roger Wong, Scott D Wilbur
    Abstract:

    Astatine-211 is an attractive radionuclide for use in targeted alpha therapy of blood-borne diseases and micrometastatic diseases. Efficient isolation methods that can be adapted to robust automated 211At isolation systems are of high interest for improving the availability of 211At. Based on the early studies of Bochvarova and co-workers involving isolation of 211At from irradiated thorium targets, we developed a method for 211At isolation from bismuth targets using tellurium-packed columns. Dissolution of irradiated bismuth targets is accomplished using HNO3; however, 211At is not captured on the Te column material in this matrix. Our method involves slow addition of aqueous NH2OH·HCl to the Bi target dissolved in HNO3 to convert to a HCl matrix. The amount of NH2OH·HCl was optimized because (1) the quantity of NH2OH·HCl used appears to affect the radiolabeling yield of phenethyl-closo-decaborate(2-) (B10)-conjugated antibodies and (2) reducing the volume of NH2OH·HCl solution can effectively shorten the overall isolation time. A proof-of-concept semi-automated process has been demonstrated using targets containing ~0.96 GBq (~26 mCi) of 211At. High isolation yields (88–95%) were obtained. Radiochemical purity of the isolated 211At was assessed by radio-HPLC. Concentrations of Bi and Te contaminants in the 211At and the astatinated antibodies were evaluated using ICP-MS.

  • the α emitter Astatine 211 targeted to cd38 can eradicate multiple myeloma in a disseminated disease model
    Blood, 2019
    Co-Authors: Shyril Osteen, Yukang Lin, Aimee L. Kenoyer, Donald K Hamlin, Scott D Wilbur, Melissa L Comstock, Johnnie J Orozco, Jon Jones, Margaret E Nartea, Brian W Miller
    Abstract:

    Minimal residual disease (MRD) has become an increasingly prevalent and important entity in multiple myeloma (MM). Despite deepening responses to frontline therapy, roughly 75% of MM patients never become MRD-negative to ≤10-5, which is concerning because MRD-negative status predicts significantly longer survival. MM is highly heterogeneous, and MRD persistence may reflect survival of isolated single cells and small clusters of treatment-resistant subclones. Virtually all MM clones are exquisitely sensitive to radiation, and the α-emitter Astatine-211 (211At) deposits prodigious energy within 3 cell diameters, which is ideal for eliminating MRD if effectively targeted. CD38 is a proven MM target, and we conjugated 211At to an anti-CD38 monoclonal antibody to create an 211At-CD38 therapy. When examined in a bulky xenograft model of MM, single-dose 211At-CD38 at 15 to 45 µCi at least doubled median survival of mice relative to untreated controls (P 150 days) for 50% to 80% of mice, where all untreated mice died in 20 to 55 days (P < .0001). Treatment toxicities were transient and minimal. These data suggest that 211At-CD38 offers the potential to eliminate residual MM cell clones in low-disease-burden settings, including MRD. We are optimistic that, in a planned clinical trial, addition of 211At-CD38 to an autologous stem cell transplant (ASCT) conditioning regimen may improve ASCT outcomes for MM patients.

Roy H. Larsen - One of the best experts on this subject based on the ideXlab platform.

  • The cytotoxicity and microdosimetry of Astatine-211-labeled chimeric monoclonal antibodies in human glioma and melanoma cells in vitro.
    Radiation research, 1998
    Co-Authors: Roy H. Larsen, G. Akabani, P. Welsh, Michael R Zalutsky
    Abstract:

    The cytotoxicity of alpha-particle-emitting endoradiotherapeutic compounds is of increasing interest because clinical evaluation of these potential therapeutic agents is commencing. Astatine-211 is a radionuclide with a 7.2-h half-life that emits 5.87 and 7.45 MeV alpha particles. In the present work, we have investigated the in vitro cytotoxicity of 211At-labeled chimeric monoclonal antibodies (mAbs) in monolayers of D-247 MG human glioma cells and SK-MEL-28 human melanoma cells. The mAbs studied were 81C6, reactive with the extracellular matrix antigen tenascin, Mel-14, directed against the cell membrane antigen proteoglycan chondroitin sulfate, and a nonspecific control mAb, TPS3.2. Cell uptake increased as a function of activity concentration after a 1-h exposure to the 211At-labeled mAbs. The retention of activity was also measured to calculate cumulative activity associated with the cells and the medium. The clonogenic survival as a function of activity concentration was linear in all cases with no detectable shoulder. Microdosimetric analyses were performed based on measured cell geometry, cumulative activity and Monte Carlo transport of alpha particles. Using 18 kBq/ml activity concentration and 1 h of incubation, a two to five times higher activity bound to the microcolonies was found for the specific mAbs compared to the nonspecific mAb. These calculations indicated that a survival fraction of 0.37 was achieved with 0.24-0.28 Gy for D-247 MG cells and 0.27-0.29 Gy for SK-MEL-28 cells. The microdosimetric cell sensitivity, z0, for D-247 MG cells was significantly lower than for SK-MEL-28 cells (0.08 compared to 0.15 Gy). For both cell lines, reduction in survival to 0.37 required an average of only 1-2 alpha-particle hits to the cell nucleus.

  • Cytotoxicity of (alpha)-particle-emitting Astatine-211-labelled antibody in tumour spheroids: No effect of hyperthermia
    British Journal of Cancer, 1998
    Co-Authors: M L Hauck, P C Welsh, Roy H. Larsen, Michael R Zalutsky
    Abstract:

    The high linear energy transfer, (alpha)-particle-emitting radionuclide Astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-(mu)m path length of its (alpha)-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of (alpha)-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 (mu)m) greater than the range of 211At (alpha)-particles. Hyperthermia for 1 h at 42(degrees)C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml-1. A significant regrowth delay was observed at 125 and 250 kBq ml-1 in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42(degrees)C for 1 h had no significant effect on the uptake or distribution of this anti-tenascin MAb in D-247 MG spheroids.

  • Tissue distribution and radiation dosimetry of Astatine-211-labeled chimeric 81C6, an α-particle-emitting immunoconjugate
    Nuclear Medicine and Biology, 1997
    Co-Authors: Michael R Zalutsky, Roy H. Larsen, Michael G. Stabin, Darrell D Bigner
    Abstract:

    A paired-label study was performed in athymic mice bearing subcutaneous D-54 MG human glioma xenografts to compare the localization of human/mouse anti-tenascin chimeric antibody 81C6 labeled by reaction with N-succinimidyl 3-[211At]astatobenzoate and N-succinimidyl 3-[131I]iodobenzoate. Over the 48-h observation period, the distribution of 211At- and 131I- labeled antibody were quite similar in tumor and normal tissues except stomach. These data were used to calculate human radiation doses for both intravenously and intrathecal administered 211At-labeled chimeric 81C6 using a quality factor of 5 for α-emissions.

  • inactivation of human osteosarcoma cells in vitro by 211at tp 3 monoclonal antibody comparison with Astatine 211 labeled bovine serum albumin free Astatine 211 and external beam x rays
    Radiation Research, 1994
    Co-Authors: Roy H. Larsen, Oyvind S Bruland, Per Hoff, Jorolf Alstad, Tore Lindmo, Einar K Rofstad
    Abstract:

    The potential usefulness of {alpha}-particle radioimmunotherapy in the treatment of osteosarcoma was studied in vitro by using the monoclonal antibody TP-3 and cells of three human osteosarcoma cell lines (OHS, SAOS and KPDX) differing in antigen expression. Cell survival curves were established after treatment with (a) {sup 211}At-TP-3 of different specific activities, (b) {sup 211}At-labeled bovine serum albumin (BSA), (c) free {sup 211}At and (d) external-beam X rays. The three osteosarcoma cell lines showed similar survival curves, whether treated with external-beam X rays, {sup 211}At-BSA or free {sup 211}At. The D{sub o}`s were lower for free {sup 211}At than for {sup 211}At-BSA. The survival curves for {sup 211}At-TP-3 treatment, on the other hand, differed significantly among the cell lines, suggesting that sensitivity to {sup 211}At-TP-3 treatment was governed by cellular properties other than sensitivity to external-beam X rays. The cellular property most important for sensitivity to {sup 211}At-TP-3 treatment was the antigen expression. Cell inactivation after {sup 211}At-TP-3 treatment increased substantially with increasing specific activity of the {sup 211}At-TP-3. At high specific activities, the cytotoxic effect of {sup 211}At-TP-3 was significantly higher than that of {sup 211}At-BSA. In conclusion, {sup 211}At-TP-3 has the potential to give clinically favorable therapeutic ratiosmore » in the treatment of osteosarcoma. 39 refs., 5 figs., 2 tabs.« less

  • inactivation of human osteosarcoma cells in vitro by 211at tp 3 monoclonal antibody comparison with Astatine 211 labeled bovine serum albumin free Astatine 211 and external beam x rays
    Radiation Research, 1994
    Co-Authors: Roy H. Larsen, Oyvind S Bruland, Per Hoff, Jorolf Alstad, Tore Lindmo, Einar K Rofstad
    Abstract:

    The potential usefulness of alpha-particle radioimmunotherapy in the treatment of osteosarcoma was studied in vitro by using the monoclonal antibody TP-3 and cells of three human osteosarcoma cell lines (OHS, SAOS and KPDX) differing in antigen expression. Cell survival curves were established after treatment with (a) 211At-TP-3 of different specific activities, (b) 211At-labeled bovine serum albumin (BSA), (c) free 211At and (d) external-beam X rays. The three osteosarcoma cell lines showed similar survival curves, whether treated with external-beam X rays, 211At-BSA or free 211At. The D0's were lower for free 211At than for 211At-BSA. The survival curves for 211At-TP-3 treatment, on the other hand, differed significantly among the cell lines, suggesting that sensitivity to 211At-TP-3 treatment was governed by cellular properties other than sensitivity to external-beam X rays. The cellular property most important for sensitivity to 211At-TP-3 treatment was the antigen expression. Cell inactivation after 211At-TP-3 treatment increased substantially with increasing specific activity of the 211At-TP-3. At high specific activities, the cytotoxic effect of 211At-TP-3 was significantly higher than that of 211At-BSA. In conclusion, 211At-TP-3 has the potential to give clinically favorable therapeutic ratios in the treatment of osteosarcoma.

Erlinda B. Santos - One of the best experts on this subject based on the ideXlab platform.

  • addition of Astatine 211 labeled anti cd45 antibody to tbi as conditioning for dla identical marrow transplantation a novel strategy to overcome graft rejection in a canine presensitization model radioimmunotherapy to overcome transfusion induced sensitization
    Transplantation and Cellular Therapy Official Publication of the American Society for Transplantation and Cellular Therapy, 2021
    Co-Authors: Aya Nakaya, Erlinda B. Santos, Donald K Hamlin, Brenda M Sandmaier, Rainer Storb, Scott D Wilbur, Huiying Qiu
    Abstract:

    ABSTRACT In a canine model of presensitization using donor blood transfusions, 100% of historical control dogs receiving 9.2 Gy total body irradiation (TBI) conditioning before dog leukocyte antigen (DLA)-identical marrow grafts had graft rejection. In this presensitization model, we investigated whether the addition of monoclonal antibody (mAb)-based targeted radioimmunotherapy (RIT) with Astatine-211 (211At) to TBI could overcome graft rejection. 211At is an alpha-particle-emitting isotope that has a short path length, very high energy, and a short t½ of 7.2 hours, which allowed targeting radiation to the T cells responsible for graft rejection. Normal canine recipients were given three preceding transfusions of unirradiated whole blood on days –24, –17, and –10 before transplant from their DLA-identical marrow donors. 211At-anti-CD45 mAb was administered on day –3, and TBI followed by marrow grafts on day 0. Six of the 7 dogs (86%) achieved sustained engraftment as assessed by 100% donor chimerism in mononuclear cells, granulocytes, and CD3+ T cells. One dog receiving the lowest CD34+ cell content (0.35 × 106 cells/kg) rejected the graft. There were no late rejections in dogs followed up to 1 year. Graft-versus-host disease was seen in one dog. 211At-anti-CD45 mAb in combination with TBI as conditioning was successful in abrogating graft rejection in 86% of dogs in this presensitization model. 211At-anti-CD45 mAb conditioning with TBI may serve as a novel promising strategy to overcome graft rejection in heavily transfused patients with red cell disorders.

  • alpha imaging confirmed efficient targeting of cd45 positive cells after Astatine 211 211at radioimmunotherapy for hematopoietic cell transplantation
    The Journal of Nuclear Medicine, 2015
    Co-Authors: Sofia H L Frost, Erlinda B. Santos, Aimee L. Kenoyer, Shani L. Frayo, Donald K Hamlin, Rainer Storb, Brian W Miller, Tom Back, Sue E Knoblaugh, Oliver W Press
    Abstract:

    Alpha-radioimmunotherapy targeting CD45 may substitute for total body irradiation in hematopoietic cell transplantation (HCT) preparative regimens for lymphoma. Our goal was to optimize the anti-CD45 monoclonal antibody (MAb; CA12.10C12) protein dose for Astatine-211 (211At)-radioimmunotherapy, extending the analysis to include intra-organ 211At activity distribution and α-imaging-based small-scale dosimetry, along with immunohistochemical staining. Methods Eight normal dogs were injected with either 0.75 (n=5) or 1.00 mg/kg (n=3) of 211At-B10-CA12.10C12 (11.5–27.6 MBq/kg). Two were euthanized and necropsied 19–22 hours post injection (p.i.), and six received autologous HCT three days after 211At-radioimmunotherapy, following lymph node and bone marrow biopsies at 2–4 and/or 19 hours p.i. Blood was sampled to study toxicity and clearance; CD45 targeting was evaluated by flow cytometry. 211At localization and small-scale dosimetry were assessed using two α-imaging systems: α-camera and iQID.

  • 211 Astatine conjugated monoclonal cd45 antibody based nonmyeloablative conditioning for stem cell gene therapy
    Human Gene Therapy, 2015
    Co-Authors: Christopher R. Burtner, Devikha Chandrasekaran, Erlinda B. Santos, Jennifer E Adair, Brian C. Beard, Donald K Hamlin, Scott D Wilbur, Brenda M Sandmaier
    Abstract:

    Abstract Most hematopoietic stem cell gene therapy studies require host conditioning to allow for efficient engraftment of gene-modified cells. Conditioning regimens with lower treatment-related toxicities are especially relevant for the treatment of nonmalignant blood disorders, such as hemoglobinopathies and immunodeficiencies, and for patients who are otherwise ineligible for conventional high-dose conditioning. Radioimmunotherapy, which employs an α- or a β-emitting radionuclide conjugated to a targeting antibody, is effective for delivering cytotoxic doses of radiation to a cell type of interest while minimizing off-target toxicity. Here, we demonstrate the feasibility of using a nonmyeloablative dose of a monoclonal anti-CD45 antibody conjugated to the α-emitter Astatine-211 (211At) to promote engraftment of an autologous gene-modified stem cell graft in the canine model. The doses used provided myelosuppression with rapid autologous recovery and minimal off-target toxicity. Engraftment levels were ...

  • (211)Astatine-Conjugated Monoclonal CD45 Antibody-Based Nonmyeloablative Conditioning for Stem Cell Gene Therapy.
    Human gene therapy, 2015
    Co-Authors: Christopher R. Burtner, Devikha Chandrasekaran, Erlinda B. Santos, Jennifer E Adair, Brian C. Beard, Donald K Hamlin, Brenda M Sandmaier, D. Scott Wilbur, Hans Peter Kiem
    Abstract:

    Most hematopoietic stem cell gene therapy studies require host conditioning to allow for efficient engraftment of gene-modified cells. Conditioning regimens with lower treatment-related toxicities are especially relevant for the treatment of nonmalignant blood disorders, such as hemoglobinopathies and immunodeficiencies, and for patients who are otherwise ineligible for conventional high-dose conditioning. Radioimmunotherapy, which employs an α- or a β-emitting radionuclide conjugated to a targeting antibody, is effective for delivering cytotoxic doses of radiation to a cell type of interest while minimizing off-target toxicity. Here, we demonstrate the feasibility of using a nonmyeloablative dose of a monoclonal anti-CD45 antibody conjugated to the α-emitter Astatine-211 ((211)At) to promote engraftment of an autologous gene-modified stem cell graft in the canine model. The doses used provided myelosuppression with rapid autologous recovery and minimal off-target toxicity. Engraftment levels were low in all dogs and reflected the low numbers of gene-modified cells infused. Our data suggest that a cell dose exceeding 1×10(6) cells/kg be used with nonmyeloablative doses of (211)At-anti-CD45 monoclonal antibodies for sustained engraftment in the dog model.

  • Durable donor engraftment after radioimmunotherapy using α-emitter Astatine-211-labeled anti-CD45 antibody for conditioning in allogeneic hematopoietic cell transplantation
    Blood, 2012
    Co-Authors: Ying Chen, Erlinda B. Santos, George E Sale, Barry E. Storer, Donald K Hamlin, Brian Kornblit, D. Scott Wilbur, Rainer Storb, Brenda M Sandmaier
    Abstract:

    To reduce toxicity associated with external γ-beam radiation, we investigated radioimmunotherapy with an anti-CD45 mAb labeled with the α-emitter, Astatine-211 ((211)At), as a conditioning regimen in dog leukocyte antigen-identical hematopoietic cell transplantation (HCT). Dose-finding studies in 6 dogs treated with 100 to 618 μCi/kg (211)At-labeled anti-CD45 mAb (0.5 mg/kg) without HCT rescue demonstrated dose-dependent myelosuppression with subsequent autologous recovery, and transient liver toxicity in dogs treated with (211)At doses less than or equal to 405 μCi/kg. Higher doses of (211)At induced clinical liver failure. Subsequently, 8 dogs were conditioned with 155 to 625 μCi/kg (211)At-labeled anti-CD45 mAb (0.5 mg/kg) before HCT with dog leukocyte antigen-identical bone marrow followed by a short course of cyclosporine and mycophenolate mofetil immunosuppression. Neutropenia (1-146 cells/μL), lymphopenia (0-270 cells/μL), and thrombocytopenia (1500-6560 platelets/μL) with prompt recovery was observed. Seven dogs had long-term donor mononuclear cell chimerism (19%-58%), whereas 1 dog treated with the lowest (211)At dose (155 μCi/kg) had low donor mononuclear cell chimerism (5%). At the end of follow-up (18-53 weeks), only transient liver toxicity and no renal toxicity had been observed. In conclusion, conditioning with (211)At-labeled anti-CD45 mAb is safe and efficacious and provides a platform for future clinical trials of nonmyeloablative transplantation with radioimmunotherapy-based conditioning.