ATN1 - Explore the Science & Experts | ideXlab



Scan Science and Technology

Contact Leading Edge Experts & Companies

ATN1

The Experts below are selected from a list of 6096 Experts worldwide ranked by ideXlab platform

ATN1 – Free Register to Access Experts & Abstracts

Ping Zhao – One of the best experts on this subject based on the ideXlab platform.

  • Maternal sevoflurane exposure affects differentiation of hippocampal neural stem cells by regulating miR-410-3p and ATN1.
    Stem Cell Research & Therapy, 2020
    Co-Authors: Yi Zhang, Yuxiao Wan, Yinong Zhang, Ping Zhao

    Abstract:

    BACKGROUND Currently, numerous animal studies have shown that exposure to commonly used general anesthetics during pregnancy may cause neurocognitive impairment in the offspring. Reportedly, exposure to sevoflurane during mid-trimester of pregnancy can inhibit proliferation of neural stem cells (NSCs) and lead to early apoptosis. Whether exposure to sevoflurane during pregnancy affects the differentiation of NSCs remains unclear. METHODS In the present study, pregnant rats were exposed to 3% sevoflurane once for 2 h on gestational day 14 (G14) or 3 times for 2 h on G13, G14, and G15. Next, the differentiation of NSCs was measured using neuron marker β-tubulin III and astrocyte marker glial fibrillary acidic protein (GFAP) in fetal brain tissues 24 h and 72 h after anesthesia and in hippocampus on postnatal day 28. Primary cultured rat NSCs were exposed to 4.1% sevoflurane to explore the mechanism. RESULTS The results showed that during mid-trimester, multiple exposures to sevoflurane can cause premature differentiation of NSCs in developing brains of offspring and lead to long-term neuron reduction and astrocyte proliferation in hippocampus. The data from the present study indicated that repeated exposure to sevoflurane downregulated atrophin-1 (ATN1) expression and caused early differentiation of NSCs. Overexpression of ATN1 via lentivirus transfection attenuated the influence of sevoflurane. Using dual luciferase assay, ATN1 was found to be a target gene of microRNA-410-3p (miR-410-3p). MiR-410-3p suppression via lentivirus transfection recovered the ATN1 expression and differentiation of NSCs. CONCLUSIONS The results from the present study demonstrated that repeated exposure to sevoflurane leads to early differentiation of NSCs and long-term effects via the miR-410-3p/ATN1 pathway.

    Free Register to Access Article

  • Maternal sevoflurane exposure affects differentiation of hippocampal neural stem cells by regulating microRNA-410-3p and ATN1
    , 2020
    Co-Authors: Yi Zhang, Yuxiao Wan, Yinong Zhang, Ping Zhao

    Abstract:

    Abstract
    Background Currently, numerous animal studies have shown that exposure to commonly used general anesthetics during pregnancy may cause neurocognitive impairment in the offspring. Reportedly, exposure to sevoflurane during mid-trimester of pregnancy can inhibit proliferation of neural stem cells (NSCs) and lead to early apoptosis. Whether exposure to sevoflurane during pregnancy affects the differentiation of NSCs remains unclear. Methods In the present study, pregnant rats were exposed to 3% sevoflurane once for 2 h on gestational day 14 (G14) or 3 times for 2 h on G13, G14, and G15. Next, the differentiation of NSCs was measured using neuron marker β-tubulin III and astrocyte marker glial fibrillary acidic protein (GFAP) in fetal brain tissues 24 h and 72 h after anesthesia and in hippocampus on postnatal day 28. Primary cultured rat NSCs were exposed to 4.1% sevoflurane to explore the mechanism. Results The results showed that during mid-trimester, multiple exposures to sevoflurane can cause premature differentiation of NSCs in developing brains of offspring and lead to long-term neuron reduction and astrocyte proliferation in hippocampus. The data from the present study indicated that repeated exposure to sevoflurane downregulated atrophin-1 (ATN1) expression and caused early differentiation of NSCs. Overexpression of ATN1 via lentivirus transfection attenuated the influence of sevoflurane. Using dual luciferase assay, ATN1 was found to be a target gene of microRNA‐410-3p (miR‐410-3p). MiR-410-3p suppression via lentivirus transfection recovered the ATN1 expression and differentiation of NSCs. Conclusions The results from the present study demonstrated that repeated exposure to sevoflurane leads to early differentiation of NSCs and long-term effects via the miR-410-3p/ATN1 pathway.

    Free Register to Access Article

  • Maternal Sevoflurane Exposure Affects Differentiation of Hippocampal Neural Stem Cells by Regulating microRNA-410-3p and ATN1
    , 2020
    Co-Authors: Yi Zhang, Yuxiao Wan, Yinong Zhang, Ping Zhao

    Abstract:

    Abstract
    BackgroundCurrently, numerous animal studies have shown that exposure to commonly used general anesthetics during pregnancy may cause neurocognitive impairment in the offspring. Reportedly, exposure to sevoflurane during mid-trimester of pregnancy can inhibit proliferation of neural stem cells (NSCs) and lead to early apoptosis. Whether exposure to sevoflurane during pregnancy affects the differentiation of NSCs remains unclear. MethodsIn the present study, pregnant rats were exposed to 3% sevoflurane once for 2 h on gestational day 14 (G14) or 3 times for 2 h on G13, G14, and G15. Next, the differentiation of NSCs was measured using neuron marker β-tubulin III and astrocyte marker glial fibrillary acidic protein (GFAP) in fetal brain tissues 24 h and 72 h after anesthesia and in hippocampus on postnatal day 28. The same procedures were performed on primary cultured rat NSCs to explore the mechanism. ResultsThe results showed that during mid-trimester, multiple exposure to sevoflurane can cause premature differentiation of NSCs in developing brains of offspring and lead to long-term neuron reduction and astrocyte proliferation in hippocampus. The data from the present study indicated that repeated exposure to sevoflurane downregulated ATN1 expression and caused early differentiation of NSCs. Overexpression of ATN1 via lentivirus transfection attenuated the influence of sevoflurane. Using dual luciferase assay, ATN1 was found to be a target gene of microRNA‐410-3p (miR‐410-3p). MiR-410-3p suppression via lentivirus transfection recovered the ATN1 expression and differentiation of NSCs.ConclusionsThe results from the present study demonstrated that repeated exposure to sevoflurane leads to early differentiation of NSCs and long-term effects via the miR-410-3p/ATN1 pathway.

    Free Register to Access Article

Marcel J. T. Reinders – One of the best experts on this subject based on the ideXlab platform.

  • Co-expression Patterns between ATN1 and ATXN2 Coincide with Brain Regions Affected in Huntington’s Disease
    Frontiers in Molecular Neuroscience, 2017
    Co-Authors: Arlin Keo, N. Ahmad Aziz, Oleh Dzyubachyk, Jeroen Van Der Grond, Willeke M. C. Van Roon-mom, Boudewijn P. F. Lelieveldt, Marcel J. T. Reinders, Ahmed Mahfouz

    Abstract:

    Cytosine-adenine-guanine (CAG) repeat expansions in the coding regions of nine polyglutamine (polyQ) genes (HTT, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATN1, AR, and TBP) are the cause of several neurodegenerative diseases including Huntington’s disease (HD), six different spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy. The expanded CAG repeat length in the causative gene is negatively related to the age-at-onset (AAO) of clinical symptoms. In addition to the expanded CAG repeat length in the causative gene, the normal CAG repeats in the other polyQ genes can affect the AAO, suggesting functional interactions between the polyQ genes. However, there is no detailed assessment of the relationships among polyQ genes in pathologically relevant brain regions. We used gene co-expression analysis to study the functional relationships among polyQ genes in different brain regions using the Allen Human Brain Atlas (AHBA), a spatial map of gene expression in the healthy brain. We constructed co-expression networks for seven anatomical brain structures, as well as a region showing a specific pattern of atrophy in HD patients detected by magnetic resonance imaging (MRI) of the brain. In this HD-associated region, we found that ATN1 and ATXN2 were co-expressed and shared co-expression partners which were enriched for DNA repair genes. We observed a similar co-expression pattern in the frontal lobe, parietal lobe, and striatum in which this relation was most pronounced. Given that the co-expression patterns for these anatomical structures were similar to those for the HD-associated region, our results suggest that their disruption is likely involved in HD pathology. Moreover, ATN1 and ATXN2 also shared many co-expressed genes with HTT, the causative gene of HD, across the brain. Although this triangular relationship among these three polyQ genes may also be dysregulated in other polyQ diseases, stronger co-expression patterns between ATN1 and ATXN2 observed in the HD-associated region, especially in the striatum, may be more specific to HD.

    Free Register to Access Article

  • co expression patterns between ATN1 and atxn2 coincide with brain regions affected in huntington s disease
    Frontiers in Molecular Neuroscience, 2017
    Co-Authors: Arlin Keo, Oleh Dzyubachyk, Jeroen Van Der Grond, Boudewijn P. F. Lelieveldt, Marcel J. T. Reinders, Ahmad N Aziz, Willeke M C Van Roonmom

    Abstract:

    Cytosine-adenine-guanine (CAG) repeat expansions in the coding regions of nine polyglutamine (polyQ) genes (HTT, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, ATN1, AR, and TBP) are the cause of several neurodegenerative diseases including Huntington’s disease (HD), six different spinocerebellar ataxias (SCAs), dentatorubral-pallidoluysian atrophy, and spinobulbar muscular atrophy. The expanded CAG repeat length in the causative gene is negatively related to the age-at-onset (AAO) of clinical symptoms. In addition to the expanded CAG repeat length in the causative gene, the normal CAG repeats in the other polyQ genes can affect the AAO, suggesting functional interactions between the polyQ genes. However, there is no detailed assessment of the relationships among polyQ genes in pathologically relevant brain regions. We used gene co-expression analysis to study the functional relationships among polyQ genes in different brain regions using the Allen Human Brain Atlas (AHBA), a spatial map of gene expression in the healthy brain. We constructed co-expression networks for seven anatomical brain structures, as well as a region showing a specific pattern of atrophy in HD patients detected by magnetic resonance imaging (MRI) of the brain. In this HD-associated region, we found that ATN1 and ATXN2 were co-expressed and shared co-expression partners which were enriched for DNA repair genes. We observed a similar co-expression pattern in the frontal lobe, parietal lobe, and striatum in which this relation was most pronounced. Given that the co-expression patterns for these anatomical structures were similar to those for the HD-associated region, our results suggest that their disruption is likely involved in HD pathology. Moreover, ATN1 and ATXN2 also shared many co-expressed genes with HTT, the causative gene of HD, across the brain. Although this triangular relationship among these three polyQ genes may also be dysregulated in other polyQ diseases, stronger co-expression patterns between ATN1 and ATXN2 observed in the HD-associated region, especially in the striatum, may be more specific to HD.

    Free Register to Access Article

Orlando G. P. Barsottini – One of the best experts on this subject based on the ideXlab platform.

  • Dentatorubro-Pallidoluysian Atrophy (DRPLA) among 700 Families with Ataxia in Brazil
    The Cerebellum, 2017
    Co-Authors: Pedro Braga-neto, José Luiz Pedroso, Gabriel Vasata Furtado, Tailise Conte Gheno, Maria Luiza Saraiva-pereira, Laura Bannach Jardim, Orlando G. P. Barsottini

    Abstract:

    Dentatorubro-pallidoluysian atrophy (DRPLA) is a spinocerebellar ataxia (SCA) very rare in non-Asian populations. To date, DRPLA was undetected in the general Brazilian population. Adult-onset ataxic patients have been recruited from several Brazilian neurology and neurogenetics centers. CAG lengths at SCA1, SCA2, SCA3/MJD, SCA6, SCA7, SCA12, SCA17 and DRPLA associated genes, and ATTCT expansions at SCA10 gene were studied. A single DRPLA case detected is reported. Proband was a 69-year-old Brazilian woman of mixed ancestry, with a late-onset pure ataxia: her alleles at the associated gene, ATN1 , presented 14/52 CAG repeats. History of gait ataxia and dementia was observed in two out of six siblings but was absent in her parents. This was the single DRPLA diagnosis obtained from 700 Brazilian unrelated cases with adult-onset ataxia, 487 of them with clear autosomal dominant inheritance. DRPLA accounted for 0.14% of all adult-onset ataxia cases and for 0.2% of families with autosomal dominant inheritance. Normal CAG repeats at ATN1 had a median (range) of 14 (5–20) repeats in other 410 Brazilian chromosomes. DRPLA is quite rare in Brazilian SCA families, which is consistent with the lack of large normal alleles in our population.

    Free Register to Access Article