B-DNA

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 288 Experts worldwide ranked by ideXlab platform

Shengwen Wu - One of the best experts on this subject based on the ideXlab platform.

  • the ercc2 xpd lys751gln polymorphism affects dna repair of benzo a pyrene induced damage tested in an in vitro model
    Toxicology in Vitro, 2016
    Co-Authors: Sha Xiao, Shengwen Wu, Jinghua Yang, Xiaobo Lu, Dandan Li, Yangyang Guan, Tahar Van Der Straaten
    Abstract:

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.

  • The ERCC2/XPD Lys751Gln polymorphism affects DNA repair of benzo[a]pyrene induced damage, tested in an in vitro model
    Toxicology in Vitro, 2016
    Co-Authors: Sha Xiao, Jinghua Yang, Xiaobo Lu, Dandan Li, Yangyang Guan, Shengwen Wu
    Abstract:

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.

Eggehard Holler - One of the best experts on this subject based on the ideXlab platform.

  • dna polymerase delta of physarum polycephalum
    Current Genetics, 1995
    Co-Authors: Gunthar Achhammer, Bernkhard Angerer, Alexandra Winkler, Eggehard Holler
    Abstract:

    : DNA polymerase delta from the phylogenetically ancient slime mold Physarum polycephalum has been 380-fold enriched from amoebae. It was found to have the properties typical for this type of DNA polymerase from higher eukaryotes with regard to effectors, template-primer acceptance, co-purification with 3'-5'-exonuclease activity, as well as the effect of endogenous proliferating cell nuclear antigen (PCNA) from amoebae on the stimulation and processivity of DNA synthesis. An identified cDNA fragment shows 65.5% identical amino acides with DNA polymerase delta from Saccharomyces pombe. The molecular mass of the polymerase is 125 kDa while that of PCNA is 35 kDa. During size-exclusion chromatography, the highly purified polymerase eluted in the position of 125 kDa, suggesting that no other proteins were tightly complexed with the enzyme. The DNA polymerases from the (mononucleate) amoebae and from the (multinucleate) plasmodia of P. polycephalum have very similar properties in contrast to their differences in phenotype and their mode of nuclear division. The polymerase shows a higher degree of similarity than DNA polymerase alpha, and especially the beta-like DNA polymerase, with the corresponding polymerases of higher eukaryotes. According to antibody staining, DNA polymerase delta is readily fragmented by proteases, even in the presence of inhibitor cocktails. Including freshly prepared cell lysates, proteolytic fragments are reproducible, the most abundant being 50 kDa in size. The DNA polymerase is recognized by the antisera against two peptides which have been derived by PCR-screening of plasmodial cDNA. One of the proteolytic splitting sites is located within an eight amino-acid stretch between the two antigenic sequences.

  • DNA polymerase ? of Physarum polycephalum
    Current Genetics, 1995
    Co-Authors: Gunthar Achhammer, Bernkhard Angerer, Alexandra Winkler, Eggehard Holler
    Abstract:

    : DNA polymerase delta from the phylogenetically ancient slime mold Physarum polycephalum has been 380-fold enriched from amoebae. It was found to have the properties typical for this type of DNA polymerase from higher eukaryotes with regard to effectors, template-primer acceptance, co-purification with 3'-5'-exonuclease activity, as well as the effect of endogenous proliferating cell nuclear antigen (PCNA) from amoebae on the stimulation and processivity of DNA synthesis. An identified cDNA fragment shows 65.5% identical amino acides with DNA polymerase delta from Saccharomyces pombe. The molecular mass of the polymerase is 125 kDa while that of PCNA is 35 kDa. During size-exclusion chromatography, the highly purified polymerase eluted in the position of 125 kDa, suggesting that no other proteins were tightly complexed with the enzyme. The DNA polymerases from the (mononucleate) amoebae and from the (multinucleate) plasmodia of P. polycephalum have very similar properties in contrast to their differences in phenotype and their mode of nuclear division. The polymerase shows a higher degree of similarity than DNA polymerase alpha, and especially the beta-like DNA polymerase, with the corresponding polymerases of higher eukaryotes. According to antibody staining, DNA polymerase delta is readily fragmented by proteases, even in the presence of inhibitor cocktails. Including freshly prepared cell lysates, proteolytic fragments are reproducible, the most abundant being 50 kDa in size. The DNA polymerase is recognized by the antisera against two peptides which have been derived by PCR-screening of plasmodial cDNA. One of the proteolytic splitting sites is located within an eight amino-acid stretch between the two antigenic sequences.

Sal Caradonna - One of the best experts on this subject based on the ideXlab platform.

  • Isolation and characterization of a human cDNA encoding uracil-DNA glycosylase☆
    Biochimica et Biophysica Acta, 1991
    Co-Authors: Susan J Muller, Sal Caradonna
    Abstract:

    Abstract DNA repair of genetic information is an essential defense mechanism, which protects cells against mutation and transformation. The biochemistry of human DNA repair is in its beginning stages. Our research has concentrated on the enzymes involved in the removal of atypical bases from DNA. We present information on the identification and characterization of a cDNA isolate encoding uracil-DNA glycosylase. Uracil-DNA glycosylase was purified to homogeneity from HeLa S3 cells and used to generate polyclonal antibodies. These antibodies were in turn used to isolate a uracil-DNA glycosylase specific cDNA from a human T cell (Jurkat) λ-gt11 library. The identity of this 1.25 kb cDNA was verified using in vitro transcription and translation systems to generate specific uracil-DNA glycosylase activity. Sequence data revealed a 327 amino acid open reading frame, which encodes a protein with a predicted molecular weight of 35351. No significant amino acid homology was found between this human uracil-DNA glycosylase and the glycosylases of yeast, Escherichia coli, herpes simplex virus, or a recently identified 26 000 Da species of human uracil-DNA glycosylase. This apparent lack of homology prompted an investigation of uracil-DNA glycosylase in a variety of eukaryotic species. Western analysis demonstrated the presence of a 36 kDa uracil-DNA glycosylase protein in human fibroblast, human placental and Vero cell extracts. Interestingly, these antibodies did not detect glycosylase protein in Chinese hamster ovary (CHO) or mouse NIH3T3 fibroblast cells. Under conditions of reduced stringency, Southern blot analysis of BamHI digested DNA from human fibroblasts, human placental cells and Vero cells revealed common 12 kb and 3 kb fragments. In contrast, using the same reduced stringency protocol, 6 and 8 kb fragments for CHO and NIH3T3 DNA were seen, respectively, as well as a common 3 kb fragment. Under more stringent wash conditions, the common 3 kb band was absent in all samples analyzed, and no hybridization signal was detected from DNA of hamster or mouse origin. The lack of immunological reactivity between the human uracil-DNA glycosylase and the rodent forms is therefore reflected at the genetic level as well. This distinction in human and CHO hybridization patterns enabled us to localize this human uracil-DNA glycosylase cDNA to chromosome 5 by somatic cell hybridization.

Sha Xiao - One of the best experts on this subject based on the ideXlab platform.

  • the ercc2 xpd lys751gln polymorphism affects dna repair of benzo a pyrene induced damage tested in an in vitro model
    Toxicology in Vitro, 2016
    Co-Authors: Sha Xiao, Shengwen Wu, Jinghua Yang, Xiaobo Lu, Dandan Li, Yangyang Guan, Tahar Van Der Straaten
    Abstract:

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.

  • The ERCC2/XPD Lys751Gln polymorphism affects DNA repair of benzo[a]pyrene induced damage, tested in an in vitro model
    Toxicology in Vitro, 2016
    Co-Authors: Sha Xiao, Jinghua Yang, Xiaobo Lu, Dandan Li, Yangyang Guan, Shengwen Wu
    Abstract:

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.

Tahar Van Der Straaten - One of the best experts on this subject based on the ideXlab platform.

  • the ercc2 xpd lys751gln polymorphism affects dna repair of benzo a pyrene induced damage tested in an in vitro model
    Toxicology in Vitro, 2016
    Co-Authors: Sha Xiao, Shengwen Wu, Jinghua Yang, Xiaobo Lu, Dandan Li, Yangyang Guan, Tahar Van Der Straaten
    Abstract:

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer.