Bambusa

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 5334 Experts worldwide ranked by ideXlab platform

Jun-beom Park - One of the best experts on this subject based on the ideXlab platform.

  • Evaluation of the effects of Bambusa tulda on osteogenic differentiation and mineralization of human stem cells
    Biomedical Research, 2018
    Co-Authors: Hyunjin Lee, Salah Uddin, Sang Woo Lee, Sangho Choi, Jun-beom Park
    Abstract:

    Bambusa tulda has been used for various Purpose and is considerd as one of the most useful bamboo species. This study aimed to evaluate the effects of Bambusa tulda extract (BBT) on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of BBT at concentrations ranging from 0.001% to 1%. Evaluations of cell morphology and cellular viability were done at days 1, 3, 5 and 7. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. The morphology of stem cells in the presence of BBT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not show any noticeable changes when compared with the untreated control group. The treatment of BBT (from 0.001% to 1% groups) showed decrease in alkaline phosphatase activity. The results of the Alizarin Red S staining showed a significant decrease with application of BBT. Conclusively, Bambusa tulda had influenced the osteogenic differentiation of the stem cells derived from the gingiva. Thus, the use of Bambusa tulda may produce adverse effects onto oral tissues. The concentration and application time of Bambusa tulda should be meticulously controlled to minimize the adverse effects.

  • Effects of Bambusa tulda on the proliferation of human stem cells
    Experimental and therapeutic medicine, 2017
    Co-Authors: Hyunjin Lee, Sang Woo Lee, Sangho Choi, Mohammad Salah Uddin, Jun-beom Park
    Abstract:

    To date, the effects of Bambusa tulda on stem cells have not been thoroughly assessed. The present study aimed to evaluate the effects of Bambusa tulda extract on the morphology and proliferative potential of human mesenchymal stem cells derived from the gingiva. The stem cells were cultured in a growth medium in the presence of Bambusa tulda methanolic extract (BBT) at concentrations ranging from 0.001 to 1%. Evaluation of cell morphology and cellular proliferation as well as immunofluorescent assays for collagen I were performed on days 1, 3, 5 and 7. Stem cells in the control group displayed a fibroblast-like morphology, and BBT treatment did not produce any noticeable morphological changes. However, application of 1% BBT produced a significant increase in cell proliferation. BBT, particularly at the concentration of 1%, also caused a noticeable increase of collagen I expression at day 1 and day 3. Based on these findings, it was concluded that BBT exerted beneficial effects on the proliferation of mesenchymal stem cells and enhanced collagen I expression at early time points.

Hyunjin Lee - One of the best experts on this subject based on the ideXlab platform.

  • Evaluation of the effects of Bambusa tulda on osteogenic differentiation and mineralization of human stem cells
    Biomedical Research, 2018
    Co-Authors: Hyunjin Lee, Salah Uddin, Sang Woo Lee, Sangho Choi, Jun-beom Park
    Abstract:

    Bambusa tulda has been used for various Purpose and is considerd as one of the most useful bamboo species. This study aimed to evaluate the effects of Bambusa tulda extract (BBT) on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of BBT at concentrations ranging from 0.001% to 1%. Evaluations of cell morphology and cellular viability were done at days 1, 3, 5 and 7. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. The morphology of stem cells in the presence of BBT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not show any noticeable changes when compared with the untreated control group. The treatment of BBT (from 0.001% to 1% groups) showed decrease in alkaline phosphatase activity. The results of the Alizarin Red S staining showed a significant decrease with application of BBT. Conclusively, Bambusa tulda had influenced the osteogenic differentiation of the stem cells derived from the gingiva. Thus, the use of Bambusa tulda may produce adverse effects onto oral tissues. The concentration and application time of Bambusa tulda should be meticulously controlled to minimize the adverse effects.

  • Effects of Bambusa tulda on the proliferation of human stem cells
    Experimental and therapeutic medicine, 2017
    Co-Authors: Hyunjin Lee, Sang Woo Lee, Sangho Choi, Mohammad Salah Uddin, Jun-beom Park
    Abstract:

    To date, the effects of Bambusa tulda on stem cells have not been thoroughly assessed. The present study aimed to evaluate the effects of Bambusa tulda extract on the morphology and proliferative potential of human mesenchymal stem cells derived from the gingiva. The stem cells were cultured in a growth medium in the presence of Bambusa tulda methanolic extract (BBT) at concentrations ranging from 0.001 to 1%. Evaluation of cell morphology and cellular proliferation as well as immunofluorescent assays for collagen I were performed on days 1, 3, 5 and 7. Stem cells in the control group displayed a fibroblast-like morphology, and BBT treatment did not produce any noticeable morphological changes. However, application of 1% BBT produced a significant increase in cell proliferation. BBT, particularly at the concentration of 1%, also caused a noticeable increase of collagen I expression at day 1 and day 3. Based on these findings, it was concluded that BBT exerted beneficial effects on the proliferation of mesenchymal stem cells and enhanced collagen I expression at early time points.

D. v. Singh - One of the best experts on this subject based on the ideXlab platform.

  • Rooting behaviour and soil properties in different bamboo species of Western Himalayan Foothills, India
    Scientific Reports, 2020
    Co-Authors: R. Kaushal, Indra Singh, S. D. Thapliyal, A. K. Gupta, D. Mandal, J. M. S. Tomar, Ambrish Kumar, N. M. Alam, D. Kadam, D. v. Singh
    Abstract:

    Due to extensive root system, connected rhizome bamboos are considered suitable for improving soil properties within a short period, though most of the claims are anecdotal and need to be supported with quantified data. The study evaluates seven bamboo species viz., Bambusa balcooa, Bambusa bambos, Bambusa vulgaris, Bambusa nutans, Dendrocalamus hamiltonii, Dendrocalamus stocksii and Dendrocalamus strictus for their rooting pattern and impact on soil health properties. Coarse and fine root intensity was maximum in B. vulgaris . Coarse root biomass ranged from 0.6 kg m^−3 in B. nutans to 2.0 kg m^−3 in B. vulgaris and B. bambos . Fine root biomass ranged from 1.1 kg m^−3 in B. nutans to 4.5 kg m^−3 in D. hamiltonii . Contribution of fine roots in terms of intensity and biomass was much higher than coarse roots. Fine root biomass showed declining trend with increase in soil depth in all the species. During sixth year, the litter fall ranged from 8.1 Mg ha^−1 in D. stocksii to 12.4 Mg ha^−1 in D. hamiltonii . Among soil physical properties significant improvement were recorded in hydraulic conductivity, water stable aggregates and mean weight diameter. Soil pH, organic carbon and available phosphorus under different species did not reveal any significant changes, while significant reduction was observed in total nitrogen and potassium. Significant positive correlation was observed between WSA and iron content. Soil microbial population and enzyme activities were higher in control plot. Considering root distribution, biomass, soil hydraulic conductivity and water stable aggregates, B. bambos , B. vulgaris and D. hamiltonii are recommended for rehabilitation of degraded lands prone to soil erosion.

Sangho Choi - One of the best experts on this subject based on the ideXlab platform.

  • Evaluation of the effects of Bambusa tulda on osteogenic differentiation and mineralization of human stem cells
    Biomedical Research, 2018
    Co-Authors: Hyunjin Lee, Salah Uddin, Sang Woo Lee, Sangho Choi, Jun-beom Park
    Abstract:

    Bambusa tulda has been used for various Purpose and is considerd as one of the most useful bamboo species. This study aimed to evaluate the effects of Bambusa tulda extract (BBT) on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of BBT at concentrations ranging from 0.001% to 1%. Evaluations of cell morphology and cellular viability were done at days 1, 3, 5 and 7. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. The morphology of stem cells in the presence of BBT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not show any noticeable changes when compared with the untreated control group. The treatment of BBT (from 0.001% to 1% groups) showed decrease in alkaline phosphatase activity. The results of the Alizarin Red S staining showed a significant decrease with application of BBT. Conclusively, Bambusa tulda had influenced the osteogenic differentiation of the stem cells derived from the gingiva. Thus, the use of Bambusa tulda may produce adverse effects onto oral tissues. The concentration and application time of Bambusa tulda should be meticulously controlled to minimize the adverse effects.

  • Effects of Bambusa tulda on the proliferation of human stem cells
    Experimental and therapeutic medicine, 2017
    Co-Authors: Hyunjin Lee, Sang Woo Lee, Sangho Choi, Mohammad Salah Uddin, Jun-beom Park
    Abstract:

    To date, the effects of Bambusa tulda on stem cells have not been thoroughly assessed. The present study aimed to evaluate the effects of Bambusa tulda extract on the morphology and proliferative potential of human mesenchymal stem cells derived from the gingiva. The stem cells were cultured in a growth medium in the presence of Bambusa tulda methanolic extract (BBT) at concentrations ranging from 0.001 to 1%. Evaluation of cell morphology and cellular proliferation as well as immunofluorescent assays for collagen I were performed on days 1, 3, 5 and 7. Stem cells in the control group displayed a fibroblast-like morphology, and BBT treatment did not produce any noticeable morphological changes. However, application of 1% BBT produced a significant increase in cell proliferation. BBT, particularly at the concentration of 1%, also caused a noticeable increase of collagen I expression at day 1 and day 3. Based on these findings, it was concluded that BBT exerted beneficial effects on the proliferation of mesenchymal stem cells and enhanced collagen I expression at early time points.

Sang Woo Lee - One of the best experts on this subject based on the ideXlab platform.

  • Evaluation of the effects of Bambusa tulda on osteogenic differentiation and mineralization of human stem cells
    Biomedical Research, 2018
    Co-Authors: Hyunjin Lee, Salah Uddin, Sang Woo Lee, Sangho Choi, Jun-beom Park
    Abstract:

    Bambusa tulda has been used for various Purpose and is considerd as one of the most useful bamboo species. This study aimed to evaluate the effects of Bambusa tulda extract (BBT) on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of BBT at concentrations ranging from 0.001% to 1%. Evaluations of cell morphology and cellular viability were done at days 1, 3, 5 and 7. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. The morphology of stem cells in the presence of BBT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not show any noticeable changes when compared with the untreated control group. The treatment of BBT (from 0.001% to 1% groups) showed decrease in alkaline phosphatase activity. The results of the Alizarin Red S staining showed a significant decrease with application of BBT. Conclusively, Bambusa tulda had influenced the osteogenic differentiation of the stem cells derived from the gingiva. Thus, the use of Bambusa tulda may produce adverse effects onto oral tissues. The concentration and application time of Bambusa tulda should be meticulously controlled to minimize the adverse effects.

  • Effects of Bambusa tulda on the proliferation of human stem cells
    Experimental and therapeutic medicine, 2017
    Co-Authors: Hyunjin Lee, Sang Woo Lee, Sangho Choi, Mohammad Salah Uddin, Jun-beom Park
    Abstract:

    To date, the effects of Bambusa tulda on stem cells have not been thoroughly assessed. The present study aimed to evaluate the effects of Bambusa tulda extract on the morphology and proliferative potential of human mesenchymal stem cells derived from the gingiva. The stem cells were cultured in a growth medium in the presence of Bambusa tulda methanolic extract (BBT) at concentrations ranging from 0.001 to 1%. Evaluation of cell morphology and cellular proliferation as well as immunofluorescent assays for collagen I were performed on days 1, 3, 5 and 7. Stem cells in the control group displayed a fibroblast-like morphology, and BBT treatment did not produce any noticeable morphological changes. However, application of 1% BBT produced a significant increase in cell proliferation. BBT, particularly at the concentration of 1%, also caused a noticeable increase of collagen I expression at day 1 and day 3. Based on these findings, it was concluded that BBT exerted beneficial effects on the proliferation of mesenchymal stem cells and enhanced collagen I expression at early time points.