The Experts below are selected from a list of 261 Experts worldwide ranked by ideXlab platform
Brian W Geils - One of the best experts on this subject based on the ideXlab platform.
-
Can microscale meteorological conditions predict the impact of white pine Blister Rust in Colorado and Wyoming
2020Co-Authors: William R. Jacobi, Kelly S. Burns, Holly S. J. Kearns, Betsy A. Goodrich, Brian W GeilsAbstract:White pine Blister Rust occurs when there are compatible interactions between susceptible hosts (white pines and Ribes spp.), inoculum (Cronartium ribicola spores), and local weather conditions during infection. The five spore stages of the white pine Blister Rust (WPBR) fungus have specific temperature and moisture conditions necessary for production, germination, and dissemination of spores. Local meteorological conditions may be important factors in infection success, infection periodicity and disease intensification over time.
-
White pine Blister Rust in the interior Mountain West
2020Co-Authors: Kelly S. Burns, Brian W Geils, Jim Blodgett, Dave Conklin, Jim Hoffman, Marcus Jackson, William R. Jacobi, Holly S. J. Kearns, Anna W. SchoettleAbstract:White pine Blister Rust is an exotic, invasive disease of white, stone, and foxtail pines (also referred to as white pines or five-needle pines) in the genus Pinus and subgenus Strobus (Price and others 1998). Cronartium ribicola, the fungus that causes WPBR, requires an alternate host - currants and gooseberries in the genus Ribes and species of Pedicularis and Castilleja (McDonald and others 2006, Zambino and others 2007) - to complete its life cycle. White pine Blister Rust was discovered in western North America in 1921. It is thought that the disease was accidentally introduced on infected eastern white pine (Pinus strobus) nursery stock shipped to Vancouver, BC from Europe in the early 1900s but the specific details are unclear. Since then, the disease has spread throughout the distributions of most western white pines. Although all of the North American white pine species are susceptible to white pine Blister Rust (Bingham 1972, Hoff and others 1980), it was once thought that the remote, dry habitats occupied by the noncommercial, high elevation white pines would not support Rust establishment. Unfortunately, white pine Blister Rust can now be found in many of these areas.
-
first report of the white pine Blister Rust pathogen cronartium ribicola in arizona
Plant Disease, 2011Co-Authors: M L Fairweather, Brian W GeilsAbstract:White pine Blister Rust, caused by Cronartium ribicola J.C. Fisch., was found on southwestern white pine (Pinus flexilis James var. reflexa Engelm., synonym P. strobiformis Engelm.) near Hawley Lake, Arizona (Apache County, White Mountains, 34.024°N, 109.776°W, elevation 2,357 m) in April 2009. Although white pines in the Southwest (Arizona and New Mexico) have been repeatedly surveyed for Blister Rust since its discovery in the Sacramento Mountains of southern New Mexico in 1990 (1,2), this was the first confirmation of C. ribicola in Arizona. Numerous Blister Rust cankers were sporulating on 15- to 30-year-old white pines growing in a mixed conifer stand adjacent to a meadow with orange gooseberry bushes (Ribes pinetorum Greene), a common telial host in New Mexico. Most of the observed cankers were producing their first aecia on 5-year-old branch interwhorl segments (i.e., formed in 2004). The two oldest cankers apparently originated on stemwood formed about 14 and 21 years before (1995 and 1988). Neith...
-
Blister Rust in north america what we have not learned in the past 100 years
In: Fairweather Mary Lou; Palacios Patsy comps. Proceedings of the 58th Annual Western International Forest Disease Work Conference; 2010 October 4-8;, 2011Co-Authors: Eugene P Van Arsdel, Brian W GeilsAbstract:Introduction of Cronartium ribicola (white pine Blister Rust) greatly motivated development of tree disease control and research in America. Although foresters and pathologists have learned much in the past 100 years, more remains to learn. The most important lesson is that fear of Blister Rust has reduced pine regeneration more than the disease itself. Based on six decades of study, I share what I've learned on five topics of personal interest-the evolution of pines and Rust, history of Blister Rust, effectiveness of eradication, influences of climate and Ribes, and importance of sustaining research.
-
white pines ribes and Blister Rust a review and synthesis
Forest Pathology, 2010Co-Authors: Brian W Geils, Kim E. Hummer, R S HuntAbstract:Summary For over a century, white pine Blister Rust (Cronartium ribicola) has linked white pines (Strobus) with currants and gooseberries (Ribes) in a complex and serious disease epidemic in Asia, Europe, and North America. Because of ongoing changes in climate, societal demands for forests and their amenities, and scientific advances in genetics and proteomics, our current understanding and management of the white pine Blister Rust pathosystem has become outdated. Here, we present a review and synthesis of international scope on the biology and management of Blister Rust, white pines, Ribes, and other hosts. In this article, we provide a geographical and historical background, describe the taxonomy and life cycle of the Rust, discuss pathology and ecology, and introduce a series of invited papers. These review articles summarize the literature on white pines, Ribes, and Blister Rust with respect to their status, threats, and management through genetics and silviculture. Although the principal focus is on North America, the different epidemics in Europe and Asia are also described. In the final article, we discuss several of the key observations and conclusions from the preceding review articles and identify prudent actions for research and management of white pine Blister Rust.
Diana F Tomback - One of the best experts on this subject based on the ideXlab platform.
-
whitebark pine prevalence and ecological function in treeline communities of the greater yellowstone ecosystem u s a potential disruption by white pine Blister Rust
Forests, 2018Co-Authors: Aaron C Wagner, Lynn M Resler, Diana F Tomback, Elizabeth R PansingAbstract:In the northern Rocky Mountains of the U.S. and Canada, whitebark pine (Pinus albicaulis Engelm.) is a functionally important species in treeline communities. The introduced fungal pathogen Cronartium ribicola, which causes white pine Blister Rust, has led to extensive whitebark pine mortality nearly rangewide. We examined four treeline communities within the Greater Yellowstone Ecosystem (GYE) to assess structure and composition, whitebark pine prevalence and functional role, differences in growing season mesoclimate among study areas, and Blister Rust infection incidence. We found that (1) whitebark pine frequently serves as the majority overall, solitary, and leeward tree island conifer; (2) the prevalence of different tree species in the windward position in tree islands, and thus their potential as tree island initiators, may be predicted from their relative abundance as solitary trees; and (3) white pine Blister Rust infection incidence ranged from 0.6% to 18.0% across study areas. White pine Blister Rust poses a threat to treeline development and structure and the provision of ecosystem services in the GYE. Increasing Blister Rust resistance in nearby subalpine whitebark pine communities through seedling planting or direct seeding projects should eventually result in higher levels of Blister Rust resistance in whitebark pine in treeline communities.
-
topographic influences on the distribution of white pine Blister Rust in pinus albicaulis treeline communities
Ecoscience, 2013Co-Authors: Emily K Smithmckenna, Lynn M Resler, Diana F Tomback, Huaiye Zhang, George P MalansonAbstract:The exotic disease white pine Blister Rust (caused by Cronartium ribicola) damages and kills whitebark pine (Pinus albicaulis), even in the extreme environments of alpine treeline communities. We surveyed P. albicaulis trees and tree islands for Blister Rust in 2 distinct alpine treeline communities in Montana, USA, and examined meso- and microtopographic factors potentially related to the climatic requirements for Blister Rust infection. For each of 60 sampling plots, we created high-resolution digital elevation models, derived microtopography variables, and compared these and distance to water feature variables with Blister Rust occurrence and intensity (number of cankers per infected tree) for every sampled P. albicaulis tree. Infection rates were 19% (of 328 sampled trees) and 24% (of 585 sampled trees) at the 2 sites. Tree island P. albicaulis had higher infection percentages than solitary trees. Using Bayesian analysis and a zero-inflated Poisson regression model, we determined that solar radiation and moisture-related variables correlated with both presence and number of Blister Rust cankers on P. albicaulis. Site factors that influence moisture, such as local topography, hydrology, and climate, differed between the 2 treeline study areas, which may account for the model variability.
-
Blister Rust and western forest biodiversity ecology values and outlook for white pines
Forest Pathology, 2010Co-Authors: Diana F Tomback, P AchuffAbstract:Summary Eight white pine species are widely distributed among the forests of western Canada and the United States. The different forest communities with these species contribute biodiversity to the western landscape. The trees themselves provide various ecosystem services, including wildlife habitat and watershed protection. White pine communities range in elevation from lower to upper treeline, in successional stage from seral to climax, and in stand type from krummholz to closed-canopy forest. Many white pine species are moderately to strongly fire-dependent for regeneration; several species are extreme stress tolerators and persistent on harsh sites. Among the white pines are the oldest-living trees, the world’s largest pines, species dependent on birds for seed dispersal, species important for grizzly bear habitat and species of high commercial timber value. The principal threats to white pine populations are Blister Rust (Cronartium ribicola, pathogen), fire suppression, succession, mountain pine beetle and climate change. Severe population declines in several white pine species are attributed to losses caused by these factors acting either alone or together, and sometimes in concert with logging and other land-use changes. The importance and particular interactions of these threats vary by region and species. For example, many northern and western populations of whitebark pine are seriously declining from a combination of mountain pine beetle outbreaks and severe Blister Rust infestations. As whitebark pines provide many keystone services on high-elevation sites, their loss would impact forest composition and structure, succession, biodiversity, and ecosystem services. Although there are serious challenges to science-based management and conservation (especially in remote American wilderness areas), prompt and effective intervention promoting regeneration of Blister Rust-resistant white pines could mitigate these severe impacts.
-
Blister Rust prevalence in krummholz whitebark pine implications for treeline dynamics northern rocky mountains montana u s a
Arctic Antarctic and Alpine Research, 2008Co-Authors: Lynn M Resler, Diana F TombackAbstract:ABSTRACT Whitebark pine (Pinus albicaulis), an important treeline conifer in northern Montana, is considered both a keystone and foundation species in high-elevation ecosystems. The introduced fungal pathogen Cronartium ribicola, which causes white pine Blister Rust, has resulted in severe declines in whitebark pine in subalpine forest communities throughout the northern Rockies during past decades. However, the prevalence of Blister Rust in whitebark pine within the alpine treeline community and its impact remain to be determined. We gathered field data on Blister Rust infection incidence in the treeline ecotone at two locations east of the Continental Divide in the northern Rocky Mountains, Montana, U.S.A. Our objectives were (1) to examine the potential importance of whitebark pine in tree island formation, (2) to determine if Blister Rust is present in whitebark pine within the alpine treeline community, and (3) to characterize the incidence and intensity of Blister Rust in krummholz tree islands. We ...
-
the effects of Blister Rust on post fire regeneration of whitebark pine the sundance burn of northern idaho u s a
Conservation Biology, 1995Co-Authors: Diana F Tomback, Jane Kees Clary, Jim Koehler, Raymond J Hoff, Stephen F ArnoAbstract:In the northern Rocky Mountains, whitebark pine (Pinus albicaulis) is rapidly declining as a result of previous fire exclusion policies, mountain pine beetle (Dendroctonus ponderosae) outbreaks, and white pine Blister Rust (Cronartium ribicola). Blister Rust is potentially the most destructive agent, killing seedlings, cone-bearing branches, and, eventually, mature trees. We examined densities of whitebark pine regeneration and the incidence and severity of Blister-Rust infection of seedlings and saplings in the 25-year-old Sundance Burn in the Selkirk Range of northern Idaho, an area heavily infected by Blister Rust. We found that the mean regeneration density of whitebark pine was significantly lower than that of two other comparably aged burns in western Montana. The low density was attributed to the severe damage to the seed source on the burn perimeter, resulting from previous infestation of mountain pine beetle and Blister Rust. Overall, 29% of the whitebark pine regeneration in the Sundance Burn was infected by Blister Rust. Age and height of seedlings were important predictors of incidence of infection, and height was the most important predictor of severity of infection. Thus, as seedlings grow larger, they present a bigger target to airborne Blister-Rust spores. Because of the lack of seed production in the adjacent forest and expected mortality, regeneration of whitebark pine in the Sundance Burn will be slow. In areas of northern Idaho and northwestern Montana affected by Blister Rust and pine beetle, prescribed fires for managing whitebark pine ecosystems should be restricted to small areas or should require plantings of Rust-resistant seedlings. En las Montanas Rocosas del Norte, el pino de corteza blanca (Pinus albicaulis) esta declinando rapidamente como consecuencia de politicas previas de supresion de incendios, la epidemia del escarabajo del pino de montana (Dendroctonus ponderosae) y el tizon del pino blanco (Cronartium ribicola). El tizon es potencialmente el agente destructivo mas importante, matando a los retonos, las ramas con conos y eventualmente a los arboles maduros. Examinamos las densidades de regeneracion de Pinus albicaulis y la incidencia y severidad de la infeccion por Cronartium ribicola en retonos y vastagos, en un area que padecio un incendio hace 25 anos y que es conocida como “sundance Burn,” en la Cadena montanosa de Selkirk al Norte de Idaho, un area severamente infectada por el tizon. Encontramos que la densidad de regenaracion media del pino de corteza blanca fue significativamente baja con respecto a otras dos areas incendiadas de edad comparable, en el oeste de Montana. La baja densidad fue atribuida al severo dano infligido a las fuentes de semillas en el perimetro del area quemada, resultante de epidemias previas del escarabajo del pino de montana y del tizon. En total, un 29% del area de regeneracion de Pinus albicaulis en “Sundance Burn” fue infectada por el tizon. La edad y la altura de los retonos fueron importantes predictores de la incidencia de la infeccion y la altura fue el predictor mas importante de la severidad de la infeccion. Asi, a medida que los retonos crecen en altura, presentan un blanco mas prominente para las esporas del tizon. Dada la falta de produccion de semillas en el bosque adyacente y la mortalidad esperada, la regeneracion de Pinus albicaulis en “Sundance Burn” va a ser lenta. En las areas del norte de Idaho y noroeste de Montana, afectadas por el tizon y el escarabajo de la pino, los fuegos prescriptos para el manejo de los ecosistemas del pino de corteza blanca deben ser restringidos a areas pequenas o deben requerir la plantacion de retonos resitentes al tizon.
Geral I Mcdonald - One of the best experts on this subject based on the ideXlab platform.
-
Non-Ribes alternate hosts of white pine Blister Rust: What this discovery means to whitebark pine
2020Co-Authors: Paul J Zambino, Geral I Mcdonald, Bryce A Richardson, Ned B KlopfensteinAbstract:From early to present-day outbreaks, white pine Blister Rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an understanding of many interacting factors, including the biology and life cycle of the fungus, whether it may adapt and change its behavior when exposed to different environments and hosts, and mechanisms and predicted frequencies of resistance in current and regenerating stands and populations of its hosts. Despite the long history of white pine Blister Rust on whitebark pine, significant gaps in our knowledge of the pathogen, the disease, and resistance are increasingly apparent. Our recent discovery of non-Ribes alternate hosts for the white pine Blister Rust fungus is an illustration of this point.
-
effect of white pine Blister Rust cronartium ribicola and Rust resistance breeding on genetic variation in western white pine pinus monticola
Theoretical and Applied Genetics, 2003Co-Authors: Steven J Brunsfeld, Geral I Mcdonald, Ned B KlopfensteinAbstract:Western white pine (Pinus monticola) is an economically and ecologically important species from western North America that has declined over the past several decades mainly due to the introduction of Blister Rust (Cronartium ribicola) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) was used to assess the genetic variation in northern Idaho populations of western white pine (including Rust-resistant breeding stock) in relation to Blister Rust. A total of 176 individuals from four populations was analyzed using 163 AFLP loci. Within populations, an average 31.3% of the loci were polymorphic (P), and expected heterozygosity (He) was 0.123. Genetic differentiation values (Gst) showed that 9.4% of detected genetic variation was explained by differences among populations. The comparison between the Rust-resistant breeding stock and a corresponding sample derived from multiple natural populations produced similar values of P (35% vs. 34.4%) and He (0.134 vs. 0.131). No apparent signs of a genetic bottleneck caused by Rust-resistance breeding were found. However, a comparison of two natural populations from local geographic areas showed that the population with low pressure from Blister Rust had higher polymorphism and heterozygosity than the population that had experienced high mortality due to Blister Rust: P (30.7% vs. 25.1%) and He (0.125 vs. 0.100), respectively. In addition, the population from low Blister-Rust pressure had twice as many unique alleles as the Blister Rust-selected population. The genetic distance and Dice's similarity coefficients among the four populations indicated that the local population that survived high Blister-Rust pressure was genetically similar to the Rust-resistant breeding stock.
-
Differences in needle morphology between Blister Rust resistant and susceptible western white pine stocks
Canadian Journal of Forest Research, 2001Co-Authors: Lauren Fins, Geral I Mcdonald, Maurice V WieseAbstract:Needle traits were evaluated on three groups of western white pine (Pinus monticola Dougl.) seedlings: four open-pollinated families that ranked high for the "reduced needle lesion frequency" type of resistance to Blister Rust; four Blister Rust susceptible families; and two bulk lots from a seed orchard selected for Blister Rust resistance. No statistically significant differences were found for most traits in pairwise comparisons among the three groups. However, needles of susceptible families had significantly wider and larger stomata (greater area) than did those of resistant families and seed orchard lots; their stomata were also rounder (smaller ratio of stomatal length to width) than those of the seed orchard lots. Needles of the resistant stocks were significantly shorter than those from seed orchard bulks. Contact angles of water droplets on adaxial needle surfaces were also significantly larger on resistant families compared with the other genetic stocks. Results suggest the possibility of some threshold stomatal size and (or) critical stomatal shape related to infection by the Blister Rust fungus, Cronartium ribicola J.C. Fisch. ex Rabenh., and possible differences among the groups in wax chemistry and (or) surface textures, both of which may alter behavior of Blister Rust germ tubes and (or) be altered by Blister Rust infection.
-
strategies for managing whitebark pine in the presence of white pine Blister Rust chapter 17
In: Tomback Diana F.; Arno Stephen F.; Keane Robert E. eds. Whitebark pine communities: Ecology and restoration. Washington D.C.: Island Press. p. 346, 2001Co-Authors: R. J. Hoff, Geral I Mcdonald, Dennis E Ferguson, Robert E KeaneAbstract:Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine Blister Rust (Cronartium ribicola). Blister Rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The Rust is slowly moving south through the range of whitebark pine and other white pine species.
-
Variation of virulence of white pine Blister Rust
Forest Pathology, 1993Co-Authors: R. J. Hoff, Geral I McdonaldAbstract:According to the literature the following evidence suggests racial variation in white pine Blister Rust: changes over site in general level of resistance; interaction of needle spot color types with crosses of western white pine; neutralization of specific resistance reactions; bark reactions and normal cankers on the same tree.
M C Aime - One of the best experts on this subject based on the ideXlab platform.
-
first report of the white pine Blister Rust fungus cronartium ribicola on ribes odoratum in indiana
Plant Disease, 2014Co-Authors: Andrew W Wilson, Janna L Beckerman, M C AimeAbstract:Cronartium ribicola J. C. Fisch., causal agent of white pine Blister Rust (WPBR), is one of the most damaging pathogens of five-needle pines, forming aecial states on the trunk and branches and causing cankering, topkill, and branch dieback. Infection can predispose hosts to attack by other pests such as bark beetles, and can result in host mortality. Various species of Ribes, Pedicularis, and Castilleja are alternate hosts on which C. ribicola forms its uredinial and telial states during the mid-summer to fall. In an effort to mitigate the damage caused by white pine Blister Rust, the planting of ornamental species of Ribes, such as R. occidentalis, is prohibited in 14 states. Indiana currently has no restrictions on the planting of Ribes spp. Since 2010, a Cronartium sp. has been observed producing uredinia and telia on R. odoratum ‘Crandall’ H.L. Wendl. leaves in an urban environment in West Lafayette, Indiana. Symptoms include yellow-orange lesions on the leaf upper surface with uredinia on the unders...
Ned B Klopfenstein - One of the best experts on this subject based on the ideXlab platform.
-
Non-Ribes alternate hosts of white pine Blister Rust: What this discovery means to whitebark pine
2020Co-Authors: Paul J Zambino, Geral I Mcdonald, Bryce A Richardson, Ned B KlopfensteinAbstract:From early to present-day outbreaks, white pine Blister Rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an understanding of many interacting factors, including the biology and life cycle of the fungus, whether it may adapt and change its behavior when exposed to different environments and hosts, and mechanisms and predicted frequencies of resistance in current and regenerating stands and populations of its hosts. Despite the long history of white pine Blister Rust on whitebark pine, significant gaps in our knowledge of the pathogen, the disease, and resistance are increasingly apparent. Our recent discovery of non-Ribes alternate hosts for the white pine Blister Rust fungus is an illustration of this point.
-
current and future molecular approaches to investigate the white pine Blister Rust pathosystem
Forest Pathology, 2010Co-Authors: Bryce A Richardson, A K M Ekramoddoulah, Ned B KlopfensteinAbstract:Summary Molecular genetics is proving to be especially useful for addressing a wide variety of research and management questions on the white pine Blister Rust pathosystem. White pine Blister Rust, caused by Cronartium ribicola, is an ideal model for studying biogeography, genetics, and evolution because: (1) it involves an introduced pathogen; (2) it includes multiple primary and alternate hosts occurring in large, relatively undisturbed ecosystems; (3) some hosts exhibit endemic resistance; and (4) the disease interaction is long enduring. Molecular techniques are used to investigate population genetics, phylogenetics, hybrids, and proteomics in white pine (Pinus, subgenus Strobus) and Blister Rust (Cronartium) and the genetics of resistance and virulence in the Blister Rust pathosystem. These techniques include genetic markers, mapping, microarrays, sequencing, association genetics, genomics, and genecology. Molecular genetics contributes to gene conservation, breeding for resistance, and ecosystem management.
-
white pine Blister Rust in korea japan and other asian regions comparisons and implications for north america
Forest Pathology, 2010Co-Authors: Ned B Klopfenstein, S KanekoAbstract:This article briefly reviews the history of white pine Blister Rust, attributed to Cronartium ribicola, and addresses current research and management issues in South Korea, Japan and other regions of eastern Asia (China, Russia and Himalaya). For each region, the distribution, damage, aecial hosts, telial hosts and management of C. ribicola and other Blister Rust fungi on native and introduced white pines are summarized. In addition, Blister Rust behaviours in eastern Asia and North America are compared; and the potential evolutionary and management implications are discussed.
-
effect of white pine Blister Rust cronartium ribicola and Rust resistance breeding on genetic variation in western white pine pinus monticola
Theoretical and Applied Genetics, 2003Co-Authors: Steven J Brunsfeld, Geral I Mcdonald, Ned B KlopfensteinAbstract:Western white pine (Pinus monticola) is an economically and ecologically important species from western North America that has declined over the past several decades mainly due to the introduction of Blister Rust (Cronartium ribicola) and reduced opportunities for regeneration. Amplified fragment length polymorphism (AFLP) was used to assess the genetic variation in northern Idaho populations of western white pine (including Rust-resistant breeding stock) in relation to Blister Rust. A total of 176 individuals from four populations was analyzed using 163 AFLP loci. Within populations, an average 31.3% of the loci were polymorphic (P), and expected heterozygosity (He) was 0.123. Genetic differentiation values (Gst) showed that 9.4% of detected genetic variation was explained by differences among populations. The comparison between the Rust-resistant breeding stock and a corresponding sample derived from multiple natural populations produced similar values of P (35% vs. 34.4%) and He (0.134 vs. 0.131). No apparent signs of a genetic bottleneck caused by Rust-resistance breeding were found. However, a comparison of two natural populations from local geographic areas showed that the population with low pressure from Blister Rust had higher polymorphism and heterozygosity than the population that had experienced high mortality due to Blister Rust: P (30.7% vs. 25.1%) and He (0.125 vs. 0.100), respectively. In addition, the population from low Blister-Rust pressure had twice as many unique alleles as the Blister Rust-selected population. The genetic distance and Dice's similarity coefficients among the four populations indicated that the local population that survived high Blister-Rust pressure was genetically similar to the Rust-resistant breeding stock.