Blowing Agent - Explore the Science & Experts | ideXlab

Scan Science and Technology

Contact Leading Edge Experts & Companies

Blowing Agent

The Experts below are selected from a list of 7923 Experts worldwide ranked by ideXlab platform

Ling Zhao – 1st expert on this subject based on the ideXlab platform

  • Dimensional Stability of LDPE Foams with CO2 + i-C4H10 Mixtures as Blowing Agent: Experimental and Numerical Simulation
    Industrial & Engineering Chemistry Research, 2020
    Co-Authors: Hong Zhang, Zhiying Fang, Bin Li, Hui Li, Ling Zhao


    Polyethylene foams, which account for a large share of the total production of thermoplastic foams, are mainly produced through the extrusion foaming process with butane as the Blowing Agent. Drawb…

  • foaming window for preparation of microcellular rigid polyurethanes using supercritical carbon dioxide as Blowing Agent
    Journal of Supercritical Fluids, 2019
    Co-Authors: Ze Yang, Ling Zhao, Dongdong Hu, Zhimei Xu


    Abstract Rigid polyurethane (PU) microcellular foams with high expansion ratio and uniform cell morphology can be prepared directly using supercritical carbon dioxide (CO2) as Blowing Agent. The in-situ viscosity measurements during PU polymerization in high-pressure CO2 were adopted to investigate the melt strength change as well as the PU foaming windows. It was found that a certain viscosity window existed for available foaming, which changed little with the foaming temperature or CO2 pressure, but the required reaction time to reach this viscosity foaming windows changed a lot because the existence of CO2 significantly delayed the viscosity rising. Furthermore, the viscosity foaming windows varied with different PU formula systems, e.g., about (300–400) Pa∙s for C-1/PAPI-135C system which could be foamed with cell size smaller than 10 μm, and about (245–400) Pa∙s for R090/PM200 system which was foamed with bigger cell size of (20–40) μm.

  • melt foamability of reactive extrusion modified poly ethylene terephthalate with pyromellitic dianhydride using supercritical carbon dioxide as Blowing Agent
    Polymer Engineering and Science, 2015
    Co-Authors: Zhenhao Xi, Ling Zhao


    By reactive extrusion with pyromellitic dianhydride (PMDA), foamable poly(ethylene terephthalate) (PET) was obtained, which achieved a maximum intrinsic viscosity of 1.36 dL/g with PMDA content 0.8 wt%. Dynamic shear rheological properties were measured to characterize the structure evolution of modified PET. And the Avrami analysis was extended for the non-isothermal crystallization process of modified PET, which relates to cell stabilization in the melt foaming process. Based on the batch foaming process with supercritical carbon dioxide as Blowing Agent, broad foaming temperature windows were obtained for PETs modified with 0.8 and 0.5 wt% PMDA, in which PET foams with the expansion ratio between 10 and 50 times, the cell diameter between 15 and 37 μm, and the cell density between 6.2 × 108 and 1.6 × 109 cells/cm3 were controllably produced. POLYM. ENG. SCI., 55:1528–1535, 2015. © 2014 Society of Plastics Engineers

Chul B Park – 2nd expert on this subject based on the ideXlab platform

  • use of nitrogen as a Blowing Agent for the production of fine celled high density polyethylene foams
    Macromolecular Materials and Engineering, 2006
    Co-Authors: Chul B Park


    Summary: While many experiments have been performed to examine the effects of administering CO2 as a Blowing Agent in the foaming process, very few studies have investigated the use of N2 for this purpose. In this study, foaming experiments were conducted in extrusion using HDPE as a polymeric material and N2 as a Blowing Agent. Talc was used as a nucleating Agent, and three different pressure-drop rates were applied to study the effects of pressure-drop rates on HDPE foams. The experimental results revealed that the void fraction of high-density foams blown with N2 was not affected by the die temperature, contrasting the situation in low-density foams. Surprisingly, it was the cell density which determined the void fraction of high-density foams. It was also found that the use of talc significantly increased the cell density and the void fraction of the foams and minimized the role played by the pressure-drop rate in cell nucleation.

    Effect of N2 content on the cell density of HDPE foams.

  • increase of open cell content by plasticizing soft regions with secondary Blowing Agent
    Polymer Engineering and Science, 2005
    Co-Authors: Hani E Naguib, Chul B Park, Jin Wang


    This article describes the effects of n-butane mixed with primary CO2 as a secondary Blowing Agent on the cell-population density, the volume expansion ratio, and the open-cell content of low-density polyethylene (LDPE) and LDPE/polystyrene (PS) blends in extrusion. With the plasticizing effect of n-butane, a high open-cell content (up to 100%) over a wide range of processing temperatures was successfully achieved. POLYM. ENG. SCI., 45:1445–1451, 2005. © 2005 Society of Plastics Engineers

  • development of an extrusion system for producing fine celled hdpe wood fiber composite foams using co2 as a Blowing Agent
    Advances in Polymer Technology, 2004
    Co-Authors: H Zhang, Ghaus Rizvi, Chul B Park


    This paper presents an innovative design of a tandem extrusion system for fine-celled foaming of plastic/wood-fiber composites using a physical Blowing Agent (PBA). The plastic/wood-fiber composites utilize wood-fibers (WF) as a reinforcing filler in the plastic matrix and are known to be advantageous over the neat plastics in terms of the materials cost and some improved mechanical properties such as stiffness and strength. However, these improvements are usually accompanied by sacrifices in the ductility and impact resistance. These shortcomings can be reduced by inducing fine-celled or microcellular foaming in these composites, thereby creating a new class of materials with unique properties. An innovative tandem extrusion system with continuous on-line moisture removal and PBA injection was successfully developed. The foamed composites, produced on the tandem extrusion system, were compared with those produced on a single extruder system, and demonstrated significant improvement in cell morphology, resulting from uniform mixing and effective moisture removal. The effects of WF and coupling Agent (CA) on the cell morphology were studied. An increase in the WF content had an adverse affect. The cell morphology and foam structures were improved when an appropriate CA was added. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 263–276, 2004; Published online in Wiley InterScience ( DOI 10.1002/adv.20016

Cailiang Zhang – 3rd expert on this subject based on the ideXlab platform

  • layered silicate based polystyrene nanocomposite microcellular foam using supercritical carbon dioxide as Blowing Agent
    Polymer, 2010
    Co-Authors: Jintao Yang, Cailiang Zhang


    Abstract Exfoliated layered-silicate in the polystyrene (PS) block copolymer with different molecular weights was employed as a model material to investigate the PS nanocomposite microcellular foams expanded by supercritical carbon dioxide. Using a well-controlled foaming procedure, we investigated the influence of molecular weight of PS, dispersion and loading of layered-silicate and pressure drop rate of a Blowing Agent on the cell size and cell density. Our experimental results indicate that only exfoliated layered-silicate can inhibit the cell expansion and has high nucleation efficiency during foaming. The average cell diameter can be reduced from 6 μm to 1.4 μm and the cell density can be increased from 7.6 × 10 9 cells/cm 3 to 5.0 × 10 11  cells/cm 3 . On the contrary, aggregated layered-silicate in PS did not show any effect on the cell morphology of PS foam.