Brassica

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 125958 Experts worldwide ranked by ideXlab platform

Lars Ostergaard - One of the best experts on this subject based on the ideXlab platform.

  • a rich tilling resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development.

  • A rich TILLING resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background: The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results: Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS) to produce a TILLING (Targeting Induced Local Lesions In Genomes) population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This analysis also demonstrated that screening a 1 kb amplicon in just one third of the population (3072 M2 plants) will provide an average of 68 mutations and a 97% probability of obtaining a stop-codon mutation resulting in a truncated protein. We furthermore calculated that each plant contains on average ~10,000 mutations and due to the large number of plants, it is predicted that mutations in approximately half of the GC base pairs in the genome exist within this population. Conclusions: We have developed the first EMS TILLING resource in the diploid Brassica species, B. rapa. The mutation density in this population is ~1 per 60 kb, which makes it the most densely mutated diploid organism for which a TILLING population has been published.

Pauline Stephenson - One of the best experts on this subject based on the ideXlab platform.

  • a rich tilling resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development.

  • A rich TILLING resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background: The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results: Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS) to produce a TILLING (Targeting Induced Local Lesions In Genomes) population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This analysis also demonstrated that screening a 1 kb amplicon in just one third of the population (3072 M2 plants) will provide an average of 68 mutations and a 97% probability of obtaining a stop-codon mutation resulting in a truncated protein. We furthermore calculated that each plant contains on average ~10,000 mutations and due to the large number of plants, it is predicted that mutations in approximately half of the GC base pairs in the genome exist within this population. Conclusions: We have developed the first EMS TILLING resource in the diploid Brassica species, B. rapa. The mutation density in this population is ~1 per 60 kb, which makes it the most densely mutated diploid organism for which a TILLING population has been published.

Mary C. Christey - One of the best experts on this subject based on the ideXlab platform.

  • Production of Transgenic Vegetable Brassicas
    Brassica, 2004
    Co-Authors: Mary C. Christey, R Braun
    Abstract:

    Vegetable Brassicas are economically important and grown worldwide for consumption as both fresh and frozen produce. Brassica oleracea contains 14 vegetable species with practically every part of the plant used including the leaves (cabbage), axillary buds (Brussels sprouts), stems (kohlrabi), floral primordial (cauliflower) and flower buds (broccoli). B. campestris contains green leafy vegetables such as pak choi and Chinese cabbage. They are highly nutritious, particularly broccoli which contains high amounts of calcium, carotene, vitamin C and vitamin A. In addition, vegetable Brassicas are gaining in popularity as they contain compounds with anti-cancer properties. However, they are susceptible to attack from several insect pests and to infection by a range of bacterial and fungal diseases. In addition, post-harvest deterioration can limit shelf-life. Genetic engineering (GE) technology offers the opportunity to produce pest- and disease-resistant varieties by enabling the transfer of genes that would not be possible by conventional breeding methods. An advantage of GE is that a small amount of well-characterized DNA can be quickly added to elite lines. This DNA can be from any source; plant, animal, bacterial, viral or artificially synthesized. Since the first reports of transgenic vegetable Brassicas in the late 1980s, GE of vegetable Brassicas has now progressed to the stage where agronomically useful traits have been introduced and numerous plants have been field-tested. However, no commercial release of a transgenic vegetable Brassica cultivar has yet occurred.

  • Regeneration of transgenic vegetable Brassicas (Brassica oleracea andB. campestris) via Ri-mediated transformation
    Plant Cell Reports, 1997
    Co-Authors: Mary C. Christey, B. K. Sinclair, R. H. Braun, L. Wyke
    Abstract:

    A procedure for the production of fertile transgenic Brassicas via Ri-mediated transformation is reported in this paper. Transgenic hairy root lines were selected for 12 vegetable Brassica cultivars and lines representing six varieties: broccoli, Brussels sprouts, cabbage, cauliflower, rapid-cycling (all Brassica oleracea ) and Chinese cabbage ( B. campestris ). Leaf explants or petioles of intact cotyledons were co-cultivated with Agrobacterium strain A4T harbouring various binary vectors. The T-DNA region of all binary vectors contained a neomycin phosphotransferase II gene for kanamycin resistance, in addition to other genes. Hairy root lines grew prolifically on hormone-free medium containing kanamycin. Transgenic shoots were regenerated from all cultivars either spontaneously or after transfer of hairy roots to a hormone-containing medium. Southern analysis confirmed that the plants were transgenic. Plants from all Brassica types were successfully transferred to greenhouse conditions. Plants were fertile and segregation analysis confirmed transmission of traits to progeny.

David Baker - One of the best experts on this subject based on the ideXlab platform.

  • a rich tilling resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development.

  • A rich TILLING resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background: The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results: Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS) to produce a TILLING (Targeting Induced Local Lesions In Genomes) population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This analysis also demonstrated that screening a 1 kb amplicon in just one third of the population (3072 M2 plants) will provide an average of 68 mutations and a 97% probability of obtaining a stop-codon mutation resulting in a truncated protein. We furthermore calculated that each plant contains on average ~10,000 mutations and due to the large number of plants, it is predicted that mutations in approximately half of the GC base pairs in the genome exist within this population. Conclusions: We have developed the first EMS TILLING resource in the diploid Brassica species, B. rapa. The mutation density in this population is ~1 per 60 kb, which makes it the most densely mutated diploid organism for which a TILLING population has been published.

Graham J. King - One of the best experts on this subject based on the ideXlab platform.

  • a rich tilling resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development.

  • A rich TILLING resource for studying gene function in Brassica rapa
    BMC Plant Biology, 2010
    Co-Authors: Pauline Stephenson, Thomas Girin, Amandine Perez, Stephen Amoah, Graham J. King, David Baker, Lars Ostergaard
    Abstract:

    Background: The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa) and vegetables (eg. B. rapa and B. oleracea). Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results: Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS) to produce a TILLING (Targeting Induced Local Lesions In Genomes) population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This analysis also demonstrated that screening a 1 kb amplicon in just one third of the population (3072 M2 plants) will provide an average of 68 mutations and a 97% probability of obtaining a stop-codon mutation resulting in a truncated protein. We furthermore calculated that each plant contains on average ~10,000 mutations and due to the large number of plants, it is predicted that mutations in approximately half of the GC base pairs in the genome exist within this population. Conclusions: We have developed the first EMS TILLING resource in the diploid Brassica species, B. rapa. The mutation density in this population is ~1 per 60 kb, which makes it the most densely mutated diploid organism for which a TILLING population has been published.