Brucella

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 324 Experts worldwide ranked by ideXlab platform

Axel Cloeckaert - One of the best experts on this subject based on the ideXlab platform.

  • Brucella vulpis sp nov isolated from mandibular lymph nodes of red foxes vulpes vulpes
    International Journal of Systematic and Evolutionary Microbiology, 2016
    Co-Authors: Holger C Scholz, Mark S. Koylass, Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Sandra Revillafernandez, Jens A Hammerl, Jochen Blom
    Abstract:

    Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).

  • Brucella papionis sp nov isolated from baboons papio spp
    International Journal of Systematic and Evolutionary Microbiology, 2014
    Co-Authors: Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Nicholas J Davison, Simon D Brew, Lorraine L Perrett, Mark S. Koylass
    Abstract:

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella . This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella . The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella . Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella . Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella , for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T).

  • Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice
    Veterinary Research, 2014
    Co-Authors: Pedro Soler-lloréns, Yolanda Gil-ramírez, Ana Zabalza-baranguá, Maite Iriarte, Raquel Conde-Álvarez, Amaia Zúñiga-ripa, Beatriz San Román, Michel S Zygmunt, Nieves Vizcaíno, Axel Cloeckaert
    Abstract:

    Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S Brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S Brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S Brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.

  • the presence of Brucella ceti st26 in a striped dolphin stenella coeruleoalba with meningoencephalitis from the mediterranean sea
    Veterinary Microbiology, 2013
    Co-Authors: Patricia Alba, Michel S Zygmunt, G Terracciano, Alessia Franco, Serena Lorenzetti, Cristiano Cocumelli, Gianluca Fichi, Claudia Eleni, Axel Cloeckaert
    Abstract:

    Abstract Brucella spp. was isolated from brain, lung and intestinal lymph nodes of a dead adult male striped dolphin ( Stenella coeruleoalba ) found stranded on the Tyrrhenian coast (Tuscany, Italy) of the Mediterranean Sea in February 2012. Brucella spp. was associated with moderate to severe lesions of meningoencephalitis. A co-infection by Toxoplasma gondii was also demonstrated at brain level by means of molecular and histopathologic methods. The Brucella isolate was further characterized based on a fragment-specific polymerase chain reaction (PCR) approach, consisting of a set of five specific PCRs, targeting specific chromosomal IS 711 locations for marine mammal Brucellae , as described previously. The isolate was thus classified as Brucella ceti I; V fragment-positive (or B. ceti dolphin type), according to previous studies. Multi Locus Sequence Analysis demonstrated that the isolate belongs to Sequence Type 26, while omp2 ( omp2a and omp2b genes) sequence analysis further confirmed the isolate belonged to this group of strains. This is the first report of Brucella spp. from marine mammals in the Mediterranean Sea, and represents a further observation that this strain group is associated with hosts of the Family Delphinidae , and particularly with the striped dolphins, also in the Mediterranean area, thus constituting a further biological hazard of concern for this vulnerable subpopulation.

  • The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella
    BMC Evolutionary Biology, 2011
    Co-Authors: Stéphane Audic, Axel Cloeckaert, Magali Lescot, Jean-michel Claverie, Michel S Zygmunt
    Abstract:

    Background: Since the discovery of the Malta fever agent, Brucella melitensis, in the 19th century, six terrestrial mammal-associated Brucella species were recognized over the next century. More recently the number of novel Brucella species has increased and among them, isolation of species B. pinnipedialis and B. ceti from marine mammals raised many questions about their origin as well as on the evolutionary history of the whole genus. Results: We report here on the first complete genome sequence of a Brucella strain isolated from marine mammals, Brucella pinnipedialis strain B2/94. A whole gene-based phylogenetic analysis shows that five main groups of host-associated Brucella species rapidly diverged from a likely free-living ancestor close to the recently isolated B. microti. However, this tree lacks the resolution required to resolve the order of divergence of those groups. Comparative analyses focusing on a) genome segments unshared between B. microti and B. pinnipedialis, b) gene deletion/fusion events and c) positions and numbers of Brucella specific IS711 elements in the available Brucella genomes provided enough information to propose a branching order for those five groups. Conclusions: In this study, it appears that the closest relatives of marine mammal Brucella sp. are B. ovis and Brucella sp. NVSL 07-0026 isolated from a baboon, followed by B. melitensis and B. abortus strains, and finally the group consisting of B. suis strains, including B. canis and the group consisting of the single B. neotomae species. We were not able, however, to resolve the order of divergence of the two latter groups.

Michel S Zygmunt - One of the best experts on this subject based on the ideXlab platform.

  • Brucella vulpis sp nov isolated from mandibular lymph nodes of red foxes vulpes vulpes
    International Journal of Systematic and Evolutionary Microbiology, 2016
    Co-Authors: Holger C Scholz, Mark S. Koylass, Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Sandra Revillafernandez, Jens A Hammerl, Jochen Blom
    Abstract:

    Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).

  • Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice
    Veterinary Research, 2014
    Co-Authors: Pedro Soler-lloréns, Yolanda Gil-ramírez, Ana Zabalza-baranguá, Maite Iriarte, Raquel Conde-Álvarez, Amaia Zúñiga-ripa, Beatriz San Román, Michel S Zygmunt, Nieves Vizcaíno, Axel Cloeckaert
    Abstract:

    Brucella spp. are Gram-negative bacteria that behave as facultative intracellular parasites of a variety of mammals. This genus includes smooth (S) and rough (R) species that carry S and R lipopolysaccharides (LPS), respectively. S-LPS is a virulence factor, and mutants affected in the S-LPS O-polysaccharide (R mutants), core oligosaccharide or both show attenuation. However, B. ovis is naturally R and is virulent in sheep. We studied the role of B. ovis LPS in virulence by mutating the orthologues of wadA, wadB and wadC, three genes known to encode LPS core glycosyltransferases in S Brucellae. When mapped with antibodies to outer membrane proteins (Omps) and R-LPS, wadB and wadC mutants displayed defects in LPS structure and outer membrane topology but inactivation of wadA had little or no effect. Consistent with these observations, the wadB and wadC but not the wadA mutants were attenuated in mice. When tested as vaccines, the wadB and wadC mutants protected mice against B. ovis challenge. The results demonstrate that the LPS core is a structure essential for survival in vivo not only of S Brucellae but also of a naturally R Brucella pathogenic species, and they confirm our previous hypothesis that the Brucella LPS core is a target for vaccine development. Since vaccine B. melitensis Rev 1 is S and thus interferes in serological testing for S Brucellae, wadB mutant represents a candidate vaccine to be evaluated against B. ovis infection of sheep suitable for areas free of B. melitensis.

  • Brucella papionis sp nov isolated from baboons papio spp
    International Journal of Systematic and Evolutionary Microbiology, 2014
    Co-Authors: Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Nicholas J Davison, Simon D Brew, Lorraine L Perrett, Mark S. Koylass
    Abstract:

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella . This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella . The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella . Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella . Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella , for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T).

  • the presence of Brucella ceti st26 in a striped dolphin stenella coeruleoalba with meningoencephalitis from the mediterranean sea
    Veterinary Microbiology, 2013
    Co-Authors: Patricia Alba, Michel S Zygmunt, G Terracciano, Alessia Franco, Serena Lorenzetti, Cristiano Cocumelli, Gianluca Fichi, Claudia Eleni, Axel Cloeckaert
    Abstract:

    Abstract Brucella spp. was isolated from brain, lung and intestinal lymph nodes of a dead adult male striped dolphin ( Stenella coeruleoalba ) found stranded on the Tyrrhenian coast (Tuscany, Italy) of the Mediterranean Sea in February 2012. Brucella spp. was associated with moderate to severe lesions of meningoencephalitis. A co-infection by Toxoplasma gondii was also demonstrated at brain level by means of molecular and histopathologic methods. The Brucella isolate was further characterized based on a fragment-specific polymerase chain reaction (PCR) approach, consisting of a set of five specific PCRs, targeting specific chromosomal IS 711 locations for marine mammal Brucellae , as described previously. The isolate was thus classified as Brucella ceti I; V fragment-positive (or B. ceti dolphin type), according to previous studies. Multi Locus Sequence Analysis demonstrated that the isolate belongs to Sequence Type 26, while omp2 ( omp2a and omp2b genes) sequence analysis further confirmed the isolate belonged to this group of strains. This is the first report of Brucella spp. from marine mammals in the Mediterranean Sea, and represents a further observation that this strain group is associated with hosts of the Family Delphinidae , and particularly with the striped dolphins, also in the Mediterranean area, thus constituting a further biological hazard of concern for this vulnerable subpopulation.

  • The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella
    BMC Evolutionary Biology, 2011
    Co-Authors: Stéphane Audic, Axel Cloeckaert, Magali Lescot, Jean-michel Claverie, Michel S Zygmunt
    Abstract:

    Background: Since the discovery of the Malta fever agent, Brucella melitensis, in the 19th century, six terrestrial mammal-associated Brucella species were recognized over the next century. More recently the number of novel Brucella species has increased and among them, isolation of species B. pinnipedialis and B. ceti from marine mammals raised many questions about their origin as well as on the evolutionary history of the whole genus. Results: We report here on the first complete genome sequence of a Brucella strain isolated from marine mammals, Brucella pinnipedialis strain B2/94. A whole gene-based phylogenetic analysis shows that five main groups of host-associated Brucella species rapidly diverged from a likely free-living ancestor close to the recently isolated B. microti. However, this tree lacks the resolution required to resolve the order of divergence of those groups. Comparative analyses focusing on a) genome segments unshared between B. microti and B. pinnipedialis, b) gene deletion/fusion events and c) positions and numbers of Brucella specific IS711 elements in the available Brucella genomes provided enough information to propose a branching order for those five groups. Conclusions: In this study, it appears that the closest relatives of marine mammal Brucella sp. are B. ovis and Brucella sp. NVSL 07-0026 isolated from a baboon, followed by B. melitensis and B. abortus strains, and finally the group consisting of B. suis strains, including B. canis and the group consisting of the single B. neotomae species. We were not able, however, to resolve the order of divergence of the two latter groups.

Sascha Al Dahouk - One of the best experts on this subject based on the ideXlab platform.

  • Brucella vulpis sp nov isolated from mandibular lymph nodes of red foxes vulpes vulpes
    International Journal of Systematic and Evolutionary Microbiology, 2016
    Co-Authors: Holger C Scholz, Mark S. Koylass, Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Sandra Revillafernandez, Jens A Hammerl, Jochen Blom
    Abstract:

    Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).

  • Brucella papionis sp nov isolated from baboons papio spp
    International Journal of Systematic and Evolutionary Microbiology, 2014
    Co-Authors: Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Nicholas J Davison, Simon D Brew, Lorraine L Perrett, Mark S. Koylass
    Abstract:

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella . This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella . The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella . Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella . Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella , for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T).

  • Brucella inopinata sp nov isolated from a breast implant infection
    International Journal of Systematic and Evolutionary Microbiology, 2010
    Co-Authors: Holger C Scholz, Gilles Vergnaud, Herbert Tomaso, Sascha Al Dahouk, Peter Kampfer, Axel Cloeckaert, K Nockler, Cornelia Gollner, Peter Bahn, Marianne Maquart
    Abstract:

    A Gram-negative, non-motile, non-spore-forming coccoid bacterium (strain BO1T) has recently been isolated from a breast implant wound of a 71-year-old female patient with clinical signs of brucellosis. Affiliation of strain BO1T to the genus Brucella was confirmed by polyamine pattern, polar lipid profile, fatty acid profile, quinone system, DNA-DNA hybridization studies, and by insertion sequence 711 (IS711)-specific PCR. Strain BO1T harboured four to five copies of the Brucella specific insertion element IS711, displaying a unique banding pattern and exhibited a unique 16S rRNA gene sequence and also grouped separately in MLST analysis. Strain BO1T reacted with Brucella M-monospecific antiserum. Incomplete lysis was detected with bacteriophages Tb, F1, and F25. Biochemical profiling revealed a high degree of enzymatic activity and metabolic capabilities. In multilocus VNTR (variable-number tandem-repeat) analysis (MLVA), strain BO1T showed a very distinctive profile and clustered with the other 'exotic' Brucella strains, including strains isolated from marine mammals, and B. microti, B. suis biovar 5 and B. neotomae. Comparative omp2a and omp2b gene sequence analysis revealed the most divergent omp2 sequences identified to date for a Brucella strain. The recA gene sequence of strain BO1T differed in seven nucleotides from the Brucella recA consensus sequence. Using the Brucella species-specific Multiplex PCR assay, strain BO1T displayed a unique banding pattern not observed in other Brucella species. From the phenotypic and molecular analysis it became evident that strain BO1T was clearly different from all other Brucella species, and therefore represents a novel species within the genus Brucella. Because of its unexpected isolation, the name Brucella inopinata with the type strain BO1T (= BCCN 09-01T = CPAM 6436T) is proposed

  • mlva 16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipedialis
    BMC Microbiology, 2009
    Co-Authors: Marianne Maquart, Sascha Al Dahouk, Philippe Le Fleche, Geoffrey Foster, Morten Tryland, Francoise Ramisse, Berit Djonne, Isabelle Jacques, Heinrich Neubauer
    Abstract:

    Background Since 1994, Brucella strains have been isolated from a wide range of marine mammals. They are currently recognized as two new Brucella species, B. pinnipedialis for the pinniped isolates and B. ceti for the cetacean isolates in agreement with host preference and specific phenotypic and molecular markers. In order to investigate the genetic relationships within the marine mammal Brucella isolates and with reference to terrestrial mammal Brucella isolates, we applied in this study the Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) approach. A previously published assay comprising 16 loci (MLVA-16) that has been shown to be highly relevant and efficient for typing and clustering Brucella strains from animal and human origin was used.

  • Brucella microti sp nov isolated from the common vole microtus arvalis
    International Journal of Systematic and Evolutionary Microbiology, 2008
    Co-Authors: Holger C Scholz, Heinrich Neubauer, Falk Melzer, Zdenek Hubalek, Ivo Sedlacek, Gilles Vergnaud, Herbert Tomaso, Sascha Al Dahouk, Peter Kampfer, Axel Cloeckaert
    Abstract:

    Two Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains CCM 4915(T) and CCM 4916), isolated from clinical specimens of the common vole Microtus arvalis during an epizootic in the Czech Republic in 2001, were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA (rrs) and recA gene sequence similarities, both isolates were allocated to the genus Brucella. Affiliation to Brucella was confirmed by DNA-DNA hybridization studies. Both strains reacted equally with Brucella M-monospecific antiserum and were lysed by the bacteriophages Tb, Wb, F1 and F25. Biochemical profiling revealed a high degree of enzyme activity and metabolic capabilities not observed in other Brucella species. The omp2a and omp2b genes of isolates CCM 4915(T) and CCM 4916 were indistinguishable. Whereas omp2a was identical to omp2a of Brucellae from certain pinniped marine mammals, omp2b clustered with omp2b of terrestrial Brucellae. Analysis of the bp26 gene downstream region identified strains CCM 4915(T) and CCM 4916 as Brucella of terrestrial origin. Both strains harboured five to six copies of the insertion element IS711, displaying a unique banding pattern as determined by Southern blotting. In comparative multilocus VNTR (variable-number tandem-repeat) analysis (MLVA) with 296 different genotypes, the two isolates grouped together, but formed a separate cluster within the genus Brucella. Multilocus sequence typing (MLST) analysis using nine different loci also placed the two isolates separately from other Brucellae. In the IS711-based AMOS PCR, a 1900 bp fragment was generated with the Brucella ovis-specific primers, revealing that the insertion element had integrated between a putative membrane protein and cboL, encoding a methyltransferase, an integration site not observed in other Brucellae. Isolates CCM 4915(T) and CCM 4916 could be clearly distinguished from all known Brucella species and their biovars by means of both their phenotypic and molecular properties, and therefore represent a novel species within the genus Brucella, for which the name Brucella microti sp. nov. with the type strain CCM 4915(T) (=BCCN 07-01(T)=CAPM 6434(T)) is proposed

Jacques Godfroid - One of the best experts on this subject based on the ideXlab platform.

  • a review of Brucella infection in marine mammals with special emphasis on Brucella pinnipedialis in the hooded seal cystophora cristata
    Veterinary Research, 2011
    Co-Authors: Ingebjorg Helena Nymo, Morten Tryland, Jacques Godfroid
    Abstract:

    Brucella spp. were isolated from marine mammals for the first time in 1994. Two novel species were later included in the genus; Brucella ceti and Brucella pinnipedialis, with cetaceans and seals as their preferred hosts, respectively. Brucella spp. have since been isolated from a variety of marine mammals. Pathological changes, including lesions of the reproductive organs and associated abortions, have only been registered in cetaceans. The zoonotic potential differs among the marine mammal Brucella strains. Many techniques, both classical typing and molecular microbiology, have been utilised for characterisation of the marine mammal Brucella spp. and the change from the band-based approaches to the sequence-based approaches has greatly increased our knowledge about these strains. Several clusters have been identified within the B. ceti and B. pinnipedialis species, and multiple studies have shown that the hooded seal isolates differ from other pinniped isolates. We describe how different molecular methods have contributed to species identification and differentiation of B. ceti and B. pinnipedialis, with special emphasis on the hooded seal isolates. We further discuss the potential role of B. pinnipedialis for the declining Northwest Atlantic hooded seal population.

  • Brucella ceti sp nov and Brucella pinnipedialis sp nov for Brucella strains with cetaceans and seals as their preferred hosts
    International Journal of Systematic and Evolutionary Microbiology, 2007
    Co-Authors: Geoffrey Foster, Jacques Godfroid, Isabelle Jacques, Bjorn Osterman, Axel Cloeckaert
    Abstract:

    Small Gram-negative cocco-bacilli resembling Brucella strains have been reported from marine mammals since the mid-1990s. Their placement in the genus Brucella has been supported by the following characteristics: they are aerobic, non-motile and catalase-positive, do not produce acid from carbohydrates and have a DNA–DNA relatedness value of >77 % with the six established members of the genus. Twenty-eight European isolates of the genus Brucella from marine mammals were distinguished from the six recognized species by their pattern of utilization of eleven substrates in oxidative metabolism tests and phage lysis. The 28 strains could be further separated into two groups with cetaceans and seals as their respective preferred hosts on the basis of molecular methods and on differences in the metabolism of l-arabinose, d-galactose and d-xylose. The names Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. are proposed for the isolates from cetaceans and seals, respectively. The type strain of Brucella ceti sp. nov. is NCTC 12891T (=BCCN 94-74T) and the type strain of Brucella pinnipedialis sp. nov. is NCTC 12890T (=BCCN 94-73T).

  • classification of Brucella spp isolated from marine mammals by dna polymorphism at the omp2 locus
    Microbes and Infection, 2001
    Co-Authors: Axel Cloeckaert, Jeanmichel Verger, Maggy Grayon, Jeanyves Paquet, B Garinbastuji, Geoff Foster, Jacques Godfroid
    Abstract:

    A number of recent reports have described the isolation and characterization of Brucella strains from a wide variety of marine mammals such as seals, porpoises, dolphins and a minke whale. These strains were identified as Brucellae by conventional typing tests. However, their overall characteristics were not assimilable to those of any of the six currently recognized Brucella species and it was suggested that they comprise a new nomen species to be called 'Brucella maris'. In the present study we analysed DNA polymorphism at the omp2 locus of 33 marine mammal Brucella strains isolated from seals, dolphins, porpoises and an otter. The omp2 locus contains two gene copies (named omp2a and omp2b) coding for porin proteins and has been found particularly useful for molecular typing and identification of Brucella at the species, biovar, or strain level. PCR-restriction fragment length polymorphism (RFLP) and DNA sequencing showed that strains isolated from dolphins and porpoises carry two omp2b gene copies instead of one omp2a and one omp2b gene copy or two similar omp2a gene copies reported in the currently recognized species. This observation was also recently made for a minke whale Brucella isolate. The otter and all seal isolates except one were shown to carry one omp2a and one omp2b gene copy as encountered in isolates from terrestrial mammals. By PCR-RFLP of the omp2b gene, a specific marker was detected grouping the marine mammal Brucella isolates. Although marine mammal Brucella isolates may represent a separate group from terrestrial mammal isolates based on omp2b sequence constructed phylogenetic trees, the divergence found between their omp2b and also between their omp2a nucleotide sequences indicates that they form a more heterogeneous group than isolates from terrestrial mammals. Therefore, grouping the marine mammal Brucella isolates into one species 'Brucella maris' seems inappropriate unless the currently recognized Brucella species are grouped. With respect to the current classification of Brucellae according to the preferential host, Brucellae isolated from such diverse marine mammal species as seals and dolphins could actually comprise more than one species, and at least two new species, B. pinnipediae and B. cetaceae, could be compatible with the classical criteria of host preferentialism and DNA polymorphism at their omp2 locus. © 2001 Editions scientifiques et medicales Elsevier SAS

Mark S. Koylass - One of the best experts on this subject based on the ideXlab platform.

  • Brucella vulpis sp nov isolated from mandibular lymph nodes of red foxes vulpes vulpes
    International Journal of Systematic and Evolutionary Microbiology, 2016
    Co-Authors: Holger C Scholz, Mark S. Koylass, Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Sandra Revillafernandez, Jens A Hammerl, Jochen Blom
    Abstract:

    Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).

  • Brucella papionis sp nov isolated from baboons papio spp
    International Journal of Systematic and Evolutionary Microbiology, 2014
    Co-Authors: Adrian M. Whatmore, Sascha Al Dahouk, Axel Cloeckaert, Michel S Zygmunt, Nicholas J Davison, Simon D Brew, Lorraine L Perrett, Mark S. Koylass
    Abstract:

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella . This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella . The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella . Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella . Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella , for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T).

  • novel Brucella strain bo1 associated with a prosthetic breast implant infection
    Journal of Clinical Microbiology, 2008
    Co-Authors: Barun K De, Mark S. Koylass, Larry Stauffer, Susan E Sharp, Leta O Helsel, Arnold G Steigerwalt, Robert Vega, Thomas A Clark, Maryam I Daneshvar, Patricia P Wilkins
    Abstract:

    We report the microbiological, biochemical, and molecular characterization of an unusual Brucella strain (BO1) isolated from a breast implant wound in a 71-year-old woman with clinical symptoms consistent with brucellosis. Initial phenotypic analysis, including biochemical and antimicrobial susceptibility testing, cellular fatty acid analysis, and molecular analysis based on DNA-DNA reassociation and the presence of multiple copies of IS711 element suggested that the isolate was a Brucella-like organism, but species determination using microbiological algorithms was unsuccessful. Furthermore, molecular data based on 16S rRNA gene sequencing and multilocus sequence analysis demonstrated that BO1 was an unusual Brucella strain and not closely related to any currently described Brucella species. However, comparison with equivalent sequences in Ochrobactrum spp. confirms that the isolate is much more closely related to Brucella than to Ochrobactrum spp., and thus the isolate likely represents an atypical and novel strain within the genus Brucella.

  • molecular typing divides marine mammal strains of Brucella into at least three groups with distinct host preferences
    Journal of Medical Microbiology, 2007
    Co-Authors: Pauline Groussaud, Stephen J. Shankster, Mark S. Koylass, Adrian M. Whatmore
    Abstract:

    In order to investigate the genetic relationships within Brucella isolated from marine mammals, two genome-based typing methods, variable number of tandem repeats (VNTR) typing and multilocus sequence analysis (MLSA), were applied to a selection of 74 marine mammal isolates. All isolates were examined by VNTR and data were compared with multilocus sequencing data from a subset of 48 of these. Marine mammal Brucellae are distinct from classically recognized species by these methods and appear to correspond to three major genetic groups, which reflect distinct preferred hosts. One group contains isolates predominantly found in pinnipeds (seals) and corresponds to the previously proposed species ‘Brucella pinnipediae’. However, isolates corresponding to the previously proposed species ‘Brucella cetaceae’ fall into two distinct groups that appear to have different preferred cetacean hosts (porpoises and dolphins). Furthermore, these two groups appear less closely related to each other than either group is to ‘B. pinnipediae’ isolates. The groups identified by VNTR typing and MLSA are completely congruent. The relevance of these findings to current proposals to recognize two species of marine mammal Brucella is discussed.