Brugia

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 255 Experts worldwide ranked by ideXlab platform

Weerachai Saijuntha - One of the best experts on this subject based on the ideXlab platform.

  • morphological and molecular characteristics of malayfilaria sofiani uni mat udin takaoka n g n sp nematoda filarioidea from the common treeshrew tupaia glis diard duvaucel mammalia scandentia in peninsular malaysia
    Parasites & Vectors, 2017
    Co-Authors: Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Emilie Lefoulon, Rosli Ramli, Hasmahzaiti Omar, C. Martin
    Abstract:

    Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

  • Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia
    BMC, 2017
    Co-Authors: Shigehiko Uni, Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Rosli Ramli, Hasmahzaiti Omar, Yvonne Ai-lian Lim, Emilie Lefoulon
    Abstract:

    Abstract Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). Methods We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Results Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. Conclusions The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani

C. Martin - One of the best experts on this subject based on the ideXlab platform.

Ahmad Syihan Mat Udin - One of the best experts on this subject based on the ideXlab platform.

  • morphological and molecular characteristics of malayfilaria sofiani uni mat udin takaoka n g n sp nematoda filarioidea from the common treeshrew tupaia glis diard duvaucel mammalia scandentia in peninsular malaysia
    Parasites & Vectors, 2017
    Co-Authors: Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Emilie Lefoulon, Rosli Ramli, Hasmahzaiti Omar, C. Martin
    Abstract:

    Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

  • Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia
    BMC, 2017
    Co-Authors: Shigehiko Uni, Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Rosli Ramli, Hasmahzaiti Omar, Yvonne Ai-lian Lim, Emilie Lefoulon
    Abstract:

    Abstract Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). Methods We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Results Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. Conclusions The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani

Emilie Lefoulon - One of the best experts on this subject based on the ideXlab platform.

  • morphological and molecular characteristics of malayfilaria sofiani uni mat udin takaoka n g n sp nematoda filarioidea from the common treeshrew tupaia glis diard duvaucel mammalia scandentia in peninsular malaysia
    Parasites & Vectors, 2017
    Co-Authors: Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Emilie Lefoulon, Rosli Ramli, Hasmahzaiti Omar, C. Martin
    Abstract:

    Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

  • Morphological and molecular characteristics of Malayfilaria sofiani Uni, Mat Udin & Takaoka n. g., n. sp. (Nematoda: Filarioidea) from the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia) in Peninsular Malaysia
    BMC, 2017
    Co-Authors: Shigehiko Uni, Ahmad Syihan Mat Udin, Takeshi Agatsuma, Weerachai Saijuntha, Kerstin Junker, Sinnadurai Sivanandam, Rosli Ramli, Hasmahzaiti Omar, Yvonne Ai-lian Lim, Emilie Lefoulon
    Abstract:

    Abstract Background The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia). Methods We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing. Results Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews. Conclusions The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani

Roy J. Lowery - One of the best experts on this subject based on the ideXlab platform.

  • Response of Armigeres subalbatus (Diptera: Culicidae) to intraperitoneally isolated Brugia spp. microfilariae.
    Journal of medical entomology, 2007
    Co-Authors: Brenda T. Beerntsen, Roy J. Lowery
    Abstract:

    The relationship between mosquito and parasite involves a delicate balance that is influenced not only by the mosquito but also by parasite determinants. Using the biologically and morphologically similar parasites Brugia malayi and Brugia pahangi and the mosquito Armigeres subalbatus (Coquillett) (Diptera: Culicidae), it should be possible to dissect out the key elements involved in initiating or avoiding an immune response, known as melanotic encapsulation, because in this mosquito B. malayi microfilariae (mf) are melanized and destroyed, but B. pahangi mf develop normally into infective-stage larvae. Because of limitations in isolating sufficient mf from the circulation of an infected mammalian host, Brugia spp. mf that can be obtained in large numbers from the peritoneal cavity of an infected host were tested to ascertain the immune response of Ar. subalbatus to this source of mf. Results indicate that the immune response of Ar. subalbatus against intraperitoneal (i.p.) Brugia spp. mf mimics that which is observed when this mosquito is exposed to mf-infected animals, indicating that i.p. mf are similar to those mf that circulate naturally in the blood of the vertebrate host. Therefore, the i.p. mf should serve as an excellent source of material for genomic and proteomic studies designed to analyze the role of the parasite in influencing the immune response of the mosquito.

  • Penetration of the mosquito midgut is not required for Brugia pahangi microfilariae to avoid the melanotic encapsulation response of Armigeres subalbatus.
    Veterinary Parasitology, 2006
    Co-Authors: Brenda T. Beerntsen, Lyric C. Bartholomay, Roy J. Lowery
    Abstract:

    Insect vectors of disease have the capacity to respond to, and prevent further development of, parasites and pathogens using a response known as melanotic encapsulation. The naturally-occurring Armigeres subalbatus-Brugia spp. system provides an excellent way to investigate melanotic encapsulation and immune recognition in a mosquito host, because Brugia malayi microfilariae (mf) acquired via a blood meal are rapidly melanized in the body cavity of Ar. subalbatus, but Brugia pahangi mf evade or suppress the immune response and develop normally into infective stage larvae. Previous studies have suggested that B. pahangi mf are changed in some manner in the process of exiting the mosquito gut, thereby facilitating escape from, or suppression of, the melanotic encapsulation response. By inoculating mosquitoes with parasites, thus circumventing the midgut, we show that ∼88% of B. pahangi mf escape the melanotic encapsulation response while approximately 90% of inoculated B. malayi mf are melanized. Methods to isolate parasites for this procedure are described. These results mimic those observed in Ar. subalbatus against Brugia spp. mf that are ingested following blood feeding, and demonstrate that midgut penetration is not required for B. pahangi mf to avoid the melanotic encapsulation response of Ar. subalbatus.