Capsella

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2106 Experts worldwide ranked by ideXlab platform

Tanja Slotte - One of the best experts on this subject based on the ideXlab platform.

  • On the origin of the widespread self-compatible allotetraploid Capsella bursa-pastoris (Brassicaceae)
    Heredity, 2021
    Co-Authors: Jörg A. Bachmann, Kim A Steige, Claudia Köhler, Clément Lafon-placette, Andrew Tedder, Marco Fracassetti, Tanja Slotte
    Abstract:

    Polyploidy, or whole-genome duplication, is a common speciation mechanism in plants. An important barrier to polyploid establishment is a lack of compatible mates. Because self-compatibility alleviates this problem, it has long been hypothesized that there should be an association between polyploidy and self-compatibility (SC), but empirical support for this prediction is mixed. Here, we investigate whether the molecular makeup of the Brassicaceae self-incompatibility (SI) system, and specifically dominance relationships among S- haplotypes mediated by small RNAs, could facilitate loss of SI in allopolyploid crucifers. We focus on the allotetraploid species Capsella bursa-pastoris , which formed ~300 kya by hybridization and whole-genome duplication involving progenitors from the lineages of Capsella orientalis and Capsella grandiflora . We conduct targeted long-read sequencing to assemble and analyze eight full-length S- locus haplotypes, representing both homeologous subgenomes of C. bursa-pastoris . We further analyze small RNA (sRNA) sequencing data from flower buds to identify candidate dominance modifiers. We find that C. orientalis -derived S- haplotypes of C. bursa-pastoris harbor truncated versions of the male SI specificity gene SCR and express a conserved sRNA-based candidate dominance modifier with a target in the C. grandiflora -derived S -haplotype. These results suggest that pollen-level dominance may have facilitated loss of SI in C. bursa-pastoris . Finally, we demonstrate that spontaneous somatic tetraploidization after a wide cross between C. orientalis and C. grandiflora can result in production of self-compatible tetraploid offspring. We discuss the implications of this finding on the mode of formation of this widespread weed.

  • Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm.
    'Public Library of Science (PLoS)', 2021
    Co-Authors: Katarzyna Dziasek, Tanja Slotte, Juan Santos-gonzález, Clément Lafon-placette, Lauriane Simon, Benjamin Laenen, Cecilia Wärdig, Claudia Köhler
    Abstract:

    Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure

  • Paternally expressed imprinted genes associate with hybridization barriers in Capsella
    Nature Plants, 2019
    Co-Authors: Clément Lafon-placette, Tanja Slotte, Amandine Cornille, Martin Lascoux, Marcelinus Hatorangan, Kim Steige, Claudia Köhler
    Abstract:

    Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa1,2 that contributes to species divergence by preventing gene flow between natural populations3,4. Besides its ecological importance, it is an important obstacle to plant breeding strategies. Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest. The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)8,9. Hybrid seed defects exhibit a parent-of-origin pattern, suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.

  • cis regulatory changes associated with a recent mating system shift and floral adaptation in Capsella
    Molecular Biology and Evolution, 2015
    Co-Authors: Kim A Steige, Tanja Slotte, Daniel Koenig, Johan Reimegard, Douglas G Scofield
    Abstract:

    The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis-regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella, which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis-regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis-regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora. We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis-regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.

  • the Capsella rubella genome and the genomic consequences of rapid mating system evolution
    Nature Genetics, 2013
    Co-Authors: Tanja Slotte, Khaled M Hazzouri, Kim A Steige, Adrian E. Platts, Arvid J Agren, Daniel Koenig, Florian Maumus, Juan S Escobar
    Abstract:

    The shift from outcrossing to selfing is common in flowering plants(1,2), but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.

Stephen I. Wright - One of the best experts on this subject based on the ideXlab platform.

  • repeated inactivation of the first committed enzyme underlies the loss of benzaldehyde emission after the selfing transition in Capsella
    Current Biology, 2016
    Co-Authors: Frank Muller, Stephen I. Wright, Christian Kappel, Tyler V Kent, Monika Hilker, Michael Lenhard
    Abstract:

    Summary The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3–5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6–8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9–13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14–17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella . While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella . We identify the Capsella CNL1 gene encoding cinnamate:CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate:CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization.

  • genomic signature of successful colonization of eurasia by the allopolyploid shepherd s purse Capsella bursa pastoris
    Molecular Ecology, 2016
    Co-Authors: Amandine Cornille, Karl Holm, Adriana Salcedo, Stephen I. Wright, Dmytro Kryvokhyzha, Sylvain Glemin, Martin Lascoux
    Abstract:

    Polyploidization is a dominant feature of flowering plant evolution. However, detailed genomic analyses of the interpopulation diversification of polyploids following genome duplication are still in their infancy, mainly because of methodological limits, both in terms of sequencing and computational analyses. The shepherd's purse (Capsella bursa-pastoris) is one of the most common weed species in the world. It is highly self-fertilizing, and recent genomic data indicate that it is an allopolyploid, resulting from hybridization between the ancestors of the diploid species Capsella grandiflora and Capsella orientalis. Here, we investigated the genomic diversity of C. bursa-pastoris, its population structure and demographic history, following allopolyploidization in Eurasia. To that end, we genotyped 261 C. bursa-pastoris accessions spread across Europe, the Middle East and Asia, using genotyping-by-sequencing, leading to a total of 4274 SNPs after quality control. Bayesian clustering analyses revealed three distinct genetic clusters in Eurasia: one cluster grouping samples from Western Europe and Southeastern Siberia, the second one centred on Eastern Asia and the third one in the Middle East. Approximate Bayesian computation (ABC) supported the hypothesis that C. bursa-pastoris underwent a typical colonization history involving low gene flow among colonizing populations, likely starting from the Middle East towards Europe and followed by successive human-mediated expansions into Eastern Asia. Altogether, these findings bring new insights into the recent multistage colonization history of the allotetraploid C. bursa-pastoris and highlight ABC and genotyping-by-sequencing data as promising but still challenging tools to infer demographic histories of selfing allopolyploids.

  • repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene
    Current Biology, 2014
    Co-Authors: Adrien Sicard, Stephen I. Wright, Christian Kappel, Anna Thamm, Cindy Marona, Young Lee, Vanessa Wahl, John R Stinchcombe, Michael Lenhard
    Abstract:

    Summary Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology [1–3]. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation [4–6]. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effects underlie many cases of repeated morphological transitions [4–8]. By contrast, only few such genes have been identified from plants [8–11], limiting cross-kingdom comparisons of the principles of morphological evolution. Here, we demonstrate that the REDUCED COMPLEXITY ( RCO ) locus [12] underlies more than one naturally evolved change in leaf shape in the Brassicaceae. We show that the difference in leaf margin dissection between the sister species Capsella rubella and Capsella grandiflora is caused by cis -regulatory variation in the homeobox gene RCO-A , which alters its activity in the developing lobes of the leaf. Population genetic analyses in the ancestral C. grandiflora indicate that the more-active C. rubella haplotype is derived from a now rare or lost C. grandiflora haplotype via additional mutations. In Arabidopsis thaliana , the deletion of the RCO-A and RCO-B genes has contributed to its evolutionarily derived smooth leaf margin [12], suggesting the RCO locus as a candidate for an evolutionary hot spot. We also find that temperature-responsive expression of RCO-A can explain the phenotypic plasticity of leaf shape to ambient temperature in Capsella , suggesting a molecular basis for the well-known negative correlation between temperature and leaf margin dissection.

  • signatures of balancing selection are maintained at disease resistance loci following mating system evolution and a population bottleneck in the genus Capsella
    BMC Evolutionary Biology, 2012
    Co-Authors: Gesseca Gos, Tanja Slotte, Stephen I. Wright
    Abstract:

    Population bottlenecks can lead to a loss of variation at disease resistance loci, which could have important consequences for the ability of populations to adapt to pathogen pressure. Alternatively, current or past balancing selection could maintain high diversity, creating a strong heterogeneity in the retention of polymorphism across the genome of bottlenecked populations. We sequenced part of the LRR region of 9 NBS-LRR disease resistance genes in the outcrossing Capsella grandiflora and the recently derived, bottlenecked selfing species Capsella rubella, and compared levels and patterns of nucleotide diversity and divergence with genome-wide reference loci. In strong contrast with reference loci, average diversity at resistance loci was comparable between C. rubella and C. grandiflora, primarily due to two loci with highly elevated diversity indicative of past or present balancing selection. Average between-species differentiation was also reduced at the set of R-genes compared with reference loci, which is consistent with the maintenance of ancestral polymorphism. Historical or ongoing balancing selection on plant disease resistance genes is a likely contributor to the retention of ancestral polymorphism in some regions of the bottlenecked Capella rubella genome.

  • genetic architecture and adaptive significance of the selfing syndrome in Capsella
    Evolution, 2012
    Co-Authors: Tanja Slotte, Khaled M Hazzouri, Peter Andolfatto, David L. Stern, Stephen I. Wright
    Abstract:

    The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.

Barbara Neuffer - One of the best experts on this subject based on the ideXlab platform.

  • pleistocene dynamics of the eurasian steppe as a driving force of evolution phylogenetic history of the genus Capsella brassicaceae
    Ecology and Evolution, 2021
    Co-Authors: Anže žerdoner Calasan, Herbert Hurka, Dmitry A German, Simon Pfanzelt, Frank R Blattner, Anna Seidl, Barbara Neuffer
    Abstract:

    Capsella is a model plant genus of the Brassicaceae closely related to Arabidopsis. To disentangle its biogeographical history and intrageneric phylogenetic relationships, 282 individuals of all five currently recognized Capsella species were genotyped using a restriction digest-based next-generation sequencing method. Our analysis retrieved two main lineages within Capsella that split c. one million years ago, with western C. grandiflora and C. rubella forming a sister lineage to the eastern lineage consisting of C. orientalis. The split was attributed to continuous latitudinal displacements of the Eurasian steppe belt to the south during Early Pleistocene glacial cycles. During the interglacial cycles of the Late Pleistocene, hybridization of the two lineages took place in the southwestern East European Plain, leading to the allotetraploid C. bursa-pastoris. Extant genetic variation within C. orientalis postdated any extensive glacial events. Ecological niche modeling showed that suitable habitat for C. orientalis existed during the Last Glacial Maximum around the north coast of the Black Sea and in southern Kazakhstan. Such a scenario is also supported by population genomic data that uncovered the highest genetic diversity in the south Kazakhstan cluster, suggesting that C. orientalis originated in continental Asia and migrated north- and possibly eastwards after the last ice age. Post-glacial hybridization events between C. bursa-pastoris and C. grandiflora/rubella in the southwestern East European Plain and the Mediterranean gave rise to C. thracica. Introgression of C. grandiflora/rubella into C. bursa-pastoris resulted in a new Mediterranean cluster within the already existing Eurasian C. bursa-pastoris cluster. This study shows that the continuous displacement and disruption of the Eurasian steppe belt during the Pleistocene was the driving force in the evolution of Capsella.

  • missing link species Capsella orientalis and Capsella thracica elucidate evolution of model plant genus Capsella brassicaceae
    Molecular Ecology, 2012
    Co-Authors: Herbert Hurka, Dmitry A German, Nikolai Friesen, Andreas Franzke, Barbara Neuffer
    Abstract:

    To elucidate the evolutionary history of the genus Capsella, we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandiflora, C. rubella and C. bursa-pastoris. We sequenced the ITS and four loci of noncoding cpDNA regions (trnL - F, rps16, trnH -psbA and trnQ -rps16). Sequence data were evaluated with parsimony and Bayesian analyses. Divergence time estimates were carried out with the software package BEAST. We also performed isozyme, cytological, morphological and biogeographic studies. Capsella orientalis (self-compatible, SC; 2n = 16) forms a clade (eastern lineage) with C. bursa-pastoris (SC; 2n = 32), which is a sister clade (western lineage) to C. grandiflora (self-incompatible, SI; 2n = 16) and C. rubella (SC; 2n = 16). Capsella bursa-pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32) is allopolyploid and emerged from interspecific hybridization between C. bursa-pastoris and C. grandiflora. The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confined to steppe-like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages.

  • genetics evolution and adaptive significance of the selfing syndrome in the genus Capsella
    The Plant Cell, 2011
    Co-Authors: Adrien Sicard, Nicola Stacey, Jimmy Dessoly, Katrin Hermann, Barbara Neuffer, Isabel Bäurle, Michael Lenhard
    Abstract:

    The change from outbreeding to selfing is one of the most frequent evolutionary transitions in flowering plants. It is often accompanied by characteristic morphological and functional changes to the flowers (the selfing syndrome), including reduced flower size and opening. Little is known about the developmental and genetic basis of the selfing syndrome, as well as its adaptive significance. Here, we address these issues using the two closely related species Capsella grandiflora (the ancestral outbreeder) and red shepherd’s purse (Capsella rubella, the derived selfer). In C. rubella, petal size has been decreased by shortening the period of proliferative growth. Using interspecific recombinant inbred lines, we show that differences in petal size and flower opening between the two species each have a complex genetic basis involving allelic differences at multiple loci. An intraspecific cross within C. rubella suggests that flower size and opening have been decreased in the C. rubella lineage before its extensive geographical spread. Lastly, by generating plants that likely resemble the earliest ancestors of the C. rubella lineage, we provide evidence that evolution of the selfing syndrome was at least partly driven by selection for efficient self-pollination. Thus, our studies pave the way for a molecular dissection of selfing-syndrome evolution.

  • recent speciation associated with the evolution of selfing in Capsella
    Proceedings of the National Academy of Sciences of the United States of America, 2009
    Co-Authors: John Paul Foxe, Tanja Slotte, Herbert Hurka, Barbara Neuffer, Eli A. Stahl, Stephen I. Wright
    Abstract:

    The evolution from outcrossing to predominant self-fertilization represents one of the most common transitions in flowering plant evolution. This shift in mating system is almost universally associated with the “selfing syndrome,” characterized by marked reduction in flower size and a breakdown of the morphological and genetic mechanisms that prevent self-fertilization. In general, the timescale in which these transitions occur, and the evolutionary dynamics associated with the evolution of the selfing syndrome are poorly known. We investigated the origin and evolution of selfing in the annual plant Capsella rubella from its self-incompatible, outcrossing progenitor Capsella grandiflora by characterizing multilocus patterns of DNA sequence variation at nuclear genes. We estimate that the transition to selfing and subsequent geographic expansion have taken place during the past 20,000 years. This transition was probably associated with a shift from stable equilibrium toward a near-complete population bottleneck causing a major reduction in effective population size. The timing and severe founder event support the hypothesis that selfing was favored during colonization as new habitats emerged after the last glaciation and the expansion of agriculture. These results suggest that natural selection for reproductive assurance can lead to major morphological evolution and speciation on relatively short evolutionary timescales.

  • recent speciation of Capsella rubella from Capsella grandiflora associated with loss of self incompatibility and an extreme bottleneck
    Proceedings of the National Academy of Sciences of the United States of America, 2009
    Co-Authors: Jesper Bechsgaard, Tanja Slotte, Barbara Neuffer, Martin Lascoux, Detlef Weigel, Mikkel H Schierup
    Abstract:

    Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora and the self-compatible Capsella rubella. To elucidate the transition to selfing and its relationship to speciation of C. rubella, we have made use of comparative sequence information. Our analyses indicate that C. rubella separated from C. grandiflora recently (≈30,000–50,000 years ago) and that breakdown of S.I. occurred at approximately the same time. Contrasting the nucleotide diversity patterns of the 2 species, we found that C. rubella has only 1 or 2 alleles at most loci, suggesting that it originated through an extreme population bottleneck. Our data are consistent with diploid speciation by a single, selfing individual, most likely living in Greece. The new species subsequently colonized the Mediterranean by Northern and Southern routes, at a time that also saw the spread of agriculture. The presence of phenotypic diversity within modern C. rubella suggests that this species will be an interesting model to understand divergence and adaptation, starting from very limited standing genetic variation.

Khaled M Hazzouri - One of the best experts on this subject based on the ideXlab platform.

  • hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa pastoris
    Proceedings of the National Academy of Sciences of the United States of America, 2015
    Co-Authors: Gavin M. Douglas, Karl Holm, Adriana Salcedo, Emily B. Josephs, Khaled M Hazzouri, Kim A Steige, Gesseca Gos, Arvid J Agren, Ramesh Arunkumar
    Abstract:

    Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000–300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a “head start” through a legacy of deleterious variants and differential expression originating in parental diploid populations.

  • Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris
    bioRxiv, 2014
    Co-Authors: Gavin M. Douglas, Karl Holm, Adriana Salcedo, J. Arvid Gren, Khaled M Hazzouri, Kim A Steige, Adrian E. Platts, Emily B. Josephs
    Abstract:

    Whole genome duplication events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain uncertain, and the relative importance of genetic drift vs. natural selection in the process of gene degeneration and loss is unclear. Here we conduct whole genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole genome data provide strong support for recent hybrid origins of the tetraploid species within the last 100-300,000 years from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a shift in the efficacy of natural selection genome-wide. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide shifts in the strength and efficacy of selection rather than rapid gene loss, and that nonfunctionalization can receive a 'head start' through deleterious variants found in parental diploid populations.

  • the Capsella rubella genome and the genomic consequences of rapid mating system evolution
    Nature Genetics, 2013
    Co-Authors: Tanja Slotte, Khaled M Hazzouri, Kim A Steige, Adrian E. Platts, Arvid J Agren, Daniel Koenig, Florian Maumus, Juan S Escobar
    Abstract:

    The shift from outcrossing to selfing is common in flowering plants(1,2), but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.

  • genetic architecture and adaptive significance of the selfing syndrome in Capsella
    Evolution, 2012
    Co-Authors: Tanja Slotte, Khaled M Hazzouri, Peter Andolfatto, David L. Stern, Stephen I. Wright
    Abstract:

    The transition from outcrossing to predominant self-fertilization is one of the most common evolutionary transitions in flowering plants. This shift is often accompanied by a suite of changes in floral and reproductive characters termed the selfing syndrome. Here, we characterize the genetic architecture and evolutionary forces underlying evolution of the selfing syndrome in Capsella rubella following its recent divergence from the outcrossing ancestor C. grandiflora. We conduct genotyping by multiplexed shotgun sequencing and map floral and reproductive traits in a large (N= 550) F2 population. Our results suggest that in contrast to previous studies of the selfing syndrome, changes at a few loci, some with major effects, have shaped the evolution of the selfing syndrome in Capsella. The directionality of QTL effects, as well as population genetic patterns of polymorphism and divergence at 318 loci, is consistent with a history of directional selection on the selfing syndrome. Our study is an important step toward characterizing the genetic basis and evolutionary forces underlying the evolution of the selfing syndrome in a genetically accessible model system.

Martin Lascoux - One of the best experts on this subject based on the ideXlab platform.

  • Paternally expressed imprinted genes associate with hybridization barriers in Capsella
    Nature Plants, 2019
    Co-Authors: Clément Lafon-placette, Tanja Slotte, Amandine Cornille, Martin Lascoux, Marcelinus Hatorangan, Kim Steige, Claudia Köhler
    Abstract:

    Hybrid seed lethality is a widespread type of reproductive barrier among angiosperm taxa1,2 that contributes to species divergence by preventing gene flow between natural populations3,4. Besides its ecological importance, it is an important obstacle to plant breeding strategies. Hybrid seed lethality is mostly due to a failure of the nourishing endosperm tissue, resulting in embryo arrest. The cause of this failure is a parental dosage imbalance in the endosperm that can be a consequence of either differences in parental ploidy levels or differences in the 'effective ploidy', also known as the endosperm balance number (EBN)8,9. Hybrid seed defects exhibit a parent-of-origin pattern, suggesting that differences in number or expression strength of parent-of-origin-specific imprinted genes underpin, as the primary or the secondary cause, the molecular basis of the EBN7,10. Here, we have tested this concept in the genus Capsella and show that the effective ploidy of three Capsella species correlates with the number and expression level of paternally expressed genes (PEGs). Importantly, the number of PEGs and the effective ploidy decrease with the selfing history of a species: the obligate outbreeder Capsella grandiflora had the highest effective ploidy, followed by the recent selfer Capsella rubella and the ancient selfer Capsella orientalis. PEGs were associated with the presence of transposable elements and their silencing mark, DNA methylation in CHH context (where H denotes any base except C). This suggests that transposable elements have driven the imprintome divergence between Capsella species. Together, we propose that variation in transposable element insertions, the resulting differences in PEG number and divergence in their expression level form one component of the effective ploidy variation between species of different breeding system histories, and, as a consequence, allow the establishment of endosperm-based hybridization barriers.

  • genomic signature of successful colonization of eurasia by the allopolyploid shepherd s purse Capsella bursa pastoris
    Molecular Ecology, 2016
    Co-Authors: Amandine Cornille, Karl Holm, Adriana Salcedo, Stephen I. Wright, Dmytro Kryvokhyzha, Sylvain Glemin, Martin Lascoux
    Abstract:

    Polyploidization is a dominant feature of flowering plant evolution. However, detailed genomic analyses of the interpopulation diversification of polyploids following genome duplication are still in their infancy, mainly because of methodological limits, both in terms of sequencing and computational analyses. The shepherd's purse (Capsella bursa-pastoris) is one of the most common weed species in the world. It is highly self-fertilizing, and recent genomic data indicate that it is an allopolyploid, resulting from hybridization between the ancestors of the diploid species Capsella grandiflora and Capsella orientalis. Here, we investigated the genomic diversity of C. bursa-pastoris, its population structure and demographic history, following allopolyploidization in Eurasia. To that end, we genotyped 261 C. bursa-pastoris accessions spread across Europe, the Middle East and Asia, using genotyping-by-sequencing, leading to a total of 4274 SNPs after quality control. Bayesian clustering analyses revealed three distinct genetic clusters in Eurasia: one cluster grouping samples from Western Europe and Southeastern Siberia, the second one centred on Eastern Asia and the third one in the Middle East. Approximate Bayesian computation (ABC) supported the hypothesis that C. bursa-pastoris underwent a typical colonization history involving low gene flow among colonizing populations, likely starting from the Middle East towards Europe and followed by successive human-mediated expansions into Eastern Asia. Altogether, these findings bring new insights into the recent multistage colonization history of the allotetraploid C. bursa-pastoris and highlight ABC and genotyping-by-sequencing data as promising but still challenging tools to infer demographic histories of selfing allopolyploids.

  • contrasting demographic history and population structure in Capsella rubella and Capsella grandiflora two closely related species with different mating systems
    Molecular Ecology, 2011
    Co-Authors: Kate R St Onge, Tanja Slotte, Martin Lascoux, Thomas Kallman, Anna E Palme
    Abstract:

    Both mating system and population history can have large impacts on genetic diversity and population structure. Here, we use multilocus sequence data to investigate how these factors impact two closely related Brassicaceae species: the selfing Capsella rubella and the outcrossing C. grandiflora. To do this, we have sequenced 16 loci in approximately 70 individuals from 7 populations of each species. Patterns of population structure differ strongly between the two species. In C. grandiflora, we observe an isolation-by-distance pattern and identify three clearly delineated genetic groups. In C. rubella, where we estimate the selfing rate to be 0.90-0.94, the pattern is less clear with some sampling populations forming separate genetic clusters while others are highly mixed. The two species also have divergent histories. Our analysis gives support for a bottleneck approximately 73 kya (20-139 kya) in C. rubella, which most likely represents speciation from C. grandiflora. In C. grandiflora, there is moderate support for the standard neutral model in 2 of 3 genetic clusters, while the third cluster and the total data set show evidence of expansion. It is clear that mating system has an impact on these two species, for example affecting the level of genetic variation and the genetic structure. However, our results also clearly show that a combination of past and present processes, some of which are not affected by mating system, is needed to explain the differences between C. rubella and C. grandiflora.

  • recent speciation of Capsella rubella from Capsella grandiflora associated with loss of self incompatibility and an extreme bottleneck
    Proceedings of the National Academy of Sciences of the United States of America, 2009
    Co-Authors: Jesper Bechsgaard, Tanja Slotte, Barbara Neuffer, Martin Lascoux, Detlef Weigel, Mikkel H Schierup
    Abstract:

    Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora and the self-compatible Capsella rubella. To elucidate the transition to selfing and its relationship to speciation of C. rubella, we have made use of comparative sequence information. Our analyses indicate that C. rubella separated from C. grandiflora recently (≈30,000–50,000 years ago) and that breakdown of S.I. occurred at approximately the same time. Contrasting the nucleotide diversity patterns of the 2 species, we found that C. rubella has only 1 or 2 alleles at most loci, suggesting that it originated through an extreme population bottleneck. Our data are consistent with diploid speciation by a single, selfing individual, most likely living in Greece. The new species subsequently colonized the Mediterranean by Northern and Southern routes, at a time that also saw the spread of agriculture. The presence of phenotypic diversity within modern C. rubella suggests that this species will be an interesting model to understand divergence and adaptation, starting from very limited standing genetic variation.

  • recent speciation of Capsella rubella from Capsella grandiflora associated with loss of self incompatibility and an extreme bottleneck
    Proceedings of the National Academy of Sciences of the United States of America, 2009
    Co-Authors: Yalong Guo, Tanja Slotte, Barbara Neuffer, Martin Lascoux, Jesper Bechsgaard, Detlef Weigel, Mikkel H Schierup
    Abstract:

    Flowering plants often prevent selfing through mechanisms of self-incompatibility (S.I.). The loss of S.I. has occurred many times independently, because it provides short-term advantages in situations where pollinators or mates are rare. The genus Capsella, which is closely related to Arabidopsis, contains a pair of closely related diploid species, the self-incompatible Capsella grandiflora and the self-compatible Capsella rubella. To elucidate the transition to selfing and its relationship to speciation of C. rubella, we have made use of comparative sequence information. Our analyses indicate that C. rubella separated from C. grandiflora recently ( approximately 30,000-50,000 years ago) and that breakdown of S.I. occurred at approximately the same time. Contrasting the nucleotide diversity patterns of the 2 species, we found that C. rubella has only 1 or 2 alleles at most loci, suggesting that it originated through an extreme population bottleneck. Our data are consistent with diploid speciation by a single, selfing individual, most likely living in Greece. The new species subsequently colonized the Mediterranean by Northern and Southern routes, at a time that also saw the spread of agriculture. The presence of phenotypic diversity within modern C. rubella suggests that this species will be an interesting model to understand divergence and adaptation, starting from very limited standing genetic variation.