Coleoptera

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 65622 Experts worldwide ranked by ideXlab platform

Bill S Hansson - One of the best experts on this subject based on the ideXlab platform.

  • antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles ips typographus and dendroctonus ponderosae Coleoptera curculionidae scolytinae
    BMC Genomics, 2013
    Co-Authors: Martin N Andersson, Ewald Grossewilde, Christopher I Keeling, Jonas M Bengtsson, Macaire M S Yuen, Maria Li, Ylva Hillbur, Joerg Bohlmann, Bill S Hansson
    Abstract:

    Background: The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results: Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some Coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions: The protein families important for chemoreception have now been identified in three Coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of Coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.

  • antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles ips typographus and dendroctonus ponderosae Coleoptera curculionidae scolytinae
    BMC Genomics, 2013
    Co-Authors: Ewald Grossewilde, Christopher I Keeling, Jonas M Bengtsson, Macaire M S Yuen, Ylva Hillbur, Joerg Bohlmann, Bill S Hansson, Martin Andersson, Fredrik Schlyter
    Abstract:

    The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some Coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. The protein families important for chemoreception have now been identified in three Coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of Coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.

Brad S Coates - One of the best experts on this subject based on the ideXlab platform.

  • comparison of full mitochondrial genomes for the rice weevil sitophilus oryzae and the maize weevil sitophilus zeamais Coleoptera curculionidae
    Agri Gene, 2016
    Co-Authors: Carmen M Valero, Brad S Coates, Adebayo Amos Omoloye, Barry Robert Pittendrigh
    Abstract:

    Abstract Complete mitochondrial genome sequences were assembled for the rice weevil, Sitophilus oryzae (17,602 bp) and the maize weevil, S. zeamais (18,105 bp; Coleoptera: Curculionidae: Dryophthorinae), which encode 13 protein coding genes (PCGs), 22 transfer RNAs, and 2 ribosomal RNAs that is typical among Animalia. The A + T-rich control regions of S. oryzae (2818 bp) and S. zeamais (2832 bp) are the longest described to date among curculionoidea (weevils). Additionally, non-coding intergenic regions have increased in size due to expansion of tandem repeat arrays, but is more pronounced in S. zeamais (606 bp) compared to S. oryzae (109 bp). A total of 69 and 22 substitution mutations were found among reads from S. oryzae and S. zeamais, out of which 68 and 2 were predicted in the PCGs respectively, with a majority in NADH Dehydrogenase subunit I. Phylogenetic analyses of Coleopteran insects based upon full mitogenomes PCG sequence supported the existence of Curculionoidea and Tenebrionoidea as a monophyletic group, whereas the Cucujoidea and Elateroidea remain paraphyletic. The mitogenomes of these two Sitophilus species provide insight into short-term evolutionary relationships among curculionid beetles, and provide resources for the potential deciphering of more broad systematic questions in the Order Coleoptera.

  • assembly and annotation of full mitochondrial genomes for the corn rootworm species diabrotica virgifera virgifera and diabrotica barberi insecta Coleoptera chrysomelidae using next generation sequence data
    Gene, 2014
    Co-Authors: Brad S Coates
    Abstract:

    Abstract Complete mitochondrial genomes for two corn rootworm species, Diabrotica virgifera virgifera (16,747 bp) and Diabrotica barberi (16,632; Insecta: Coleoptera: Chrysomelidae), were assembled from Illumina HiSeq2000 read data. Annotation indicated that the order and orientation of 13 protein coding genes (PCGs), and 22 tRNA and 2 rRNA sequences were in typical of insect mitochondrial genomes. Non-standard nad4 and cox3 stop codons were composed of single T nucleotides and likely completed by adenylation, and atypical TTT start codons was predicted for both D. v. virgifera and D. barberi nad1 genes. The D. v. virgifera and D. barberi haplotypes showed 819 variable nucleotide positions within PCG regions (7.36% divergence), which suggest that speciation may have occurred ~ 3.68 million years ago assuming a linear rate of short-term substitution. Phylogenetic analyses of Coleopteran MtD genome show clustering based on family level, and may have the capacity to resolve the evolutionary history within this Order of insects.

Martin Andersson - One of the best experts on this subject based on the ideXlab platform.

  • antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles ips typographus and dendroctonus ponderosae Coleoptera curculionidae scolytinae
    BMC Genomics, 2013
    Co-Authors: Ewald Grossewilde, Christopher I Keeling, Jonas M Bengtsson, Macaire M S Yuen, Ylva Hillbur, Joerg Bohlmann, Bill S Hansson, Martin Andersson, Fredrik Schlyter
    Abstract:

    The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some Coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. The protein families important for chemoreception have now been identified in three Coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of Coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.

Martin N Andersson - One of the best experts on this subject based on the ideXlab platform.

  • antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles ips typographus and dendroctonus ponderosae Coleoptera curculionidae scolytinae
    BMC Genomics, 2013
    Co-Authors: Martin N Andersson, Ewald Grossewilde, Christopher I Keeling, Jonas M Bengtsson, Macaire M S Yuen, Maria Li, Ylva Hillbur, Joerg Bohlmann, Bill S Hansson
    Abstract:

    Background: The European spruce bark beetle, Ips typographus, and the North American mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae), are severe pests of coniferous forests. Both bark beetle species utilize aggregation pheromones to coordinate mass-attacks on host trees, while odorants from host and non-host trees modulate the pheromone response. Thus, the bark beetle olfactory sense is of utmost importance for fitness. However, information on the genes underlying olfactory detection has been lacking in bark beetles and is limited in Coleoptera. We assembled antennal transcriptomes from next-generation sequencing of I. typographus and D. ponderosae to identify members of the major chemosensory multi-gene families. Results: Gene ontology (GO) annotation indicated that the relative abundance of transcripts associated with specific GO terms was highly similar in the two species. Transcripts with terms related to olfactory function were found in both species. Focusing on the chemosensory gene families, we identified 15 putative odorant binding proteins (OBP), 6 chemosensory proteins (CSP), 3 sensory neuron membrane proteins (SNMP), 43 odorant receptors (OR), 6 gustatory receptors (GR), and 7 ionotropic receptors (IR) in I. typographus; and 31 putative OBPs, 11 CSPs, 3 SNMPs, 49 ORs, 2 GRs, and 15 IRs in D. ponderosae. Predicted protein sequences were compared with counterparts in the flour beetle, Tribolium castaneum, the cerambycid beetle, Megacyllene caryae, and the fruit fly, Drosophila melanogaster. The most notable result was found among the ORs, for which large bark beetle-specific expansions were found. However, some clades contained receptors from all four beetle species, indicating a degree of conservation among some Coleopteran OR lineages. Putative GRs for carbon dioxide and orthologues for the conserved antennal IRs were included in the identified receptor sets. Conclusions: The protein families important for chemoreception have now been identified in three Coleopteran species (four species for the ORs). Thus, this study allows for improved evolutionary analyses of Coleopteran olfaction. Identification of these proteins in two of the most destructive forest pests, sharing many semiochemicals, is especially important as they might represent novel targets for population control.

Blair D Siegfried - One of the best experts on this subject based on the ideXlab platform.

  • rna interference as a method for target site screening in the western corn rootworm diabrotica virgifera virgifera
    Journal of Insect Science, 2010
    Co-Authors: Analiza P Alves, Marce D Lorenzen, John E. Foster, Richard W Beeman, Blair D Siegfried
    Abstract:

    To test the efficacy of RNA interference (RNAi) as a method for target-site screening in Diabrotica virgifera virgifera LeConte (Coleptera: Chrysomelidae) larvae, genes were identified and tested for which clear RNAi phenotypes had been identified in the Coleopteran model, Tribolium castaneum. Here the cloning of the D. v. vergifera orthologs of laccase 2 (DvvLac2) and chitin synthase 2 (DvvCHS2) is reported. Injection of DvvLac2-specific double-stranded RNA resulted in prevention of post-molt cuticular tanning, while injection of DvvCHS2-specific dsRNA reduced chitin levels in midguts. Silencing of both DvvLac2 and DvvCHS2 was confirmed by RT-PCR and quantitative RT-PCR. As in T. castaneum, RNAi-mediated gene silencing is systemic in Diabrotica. The results indicate that RNAi-induced silencing of D. v. vergifera genes provides a powerful tool for identifying potential insecticide targets.

  • a novel cadherin like gene from western corn rootworm diabrotica virgifera virgifera Coleoptera chrysomelidae larval midgut tissue
    Insect Molecular Biology, 2007
    Co-Authors: A Sayed, Haichuan Wang, Richard H Ffrenchconstant, E R Nekl, H A A Siqueira, M Bagley, Blair D Siegfried
    Abstract:

    A cadherin-like gene associated with larval midgut tissues was cloned from western corn rootworm ( Diabrotica virgifera virgifera : Coleoptera), an economically important agricultural pest in North America and Europe and the primary target pest species for corn hybrids expressing Cry3 toxins from Bacillus thuringiensis (Bt). The full-length cDNA (5371 bp in length) encodes an open reading frame for a 1688 amino acid polypeptide. The putative protein has similar architecture to cadherin-like proteins isolated from lepidopteran midguts that have been shown to bind to Cry1 Bt toxins and have been implicated in Bt resistance. The D. v. virgifera cadherin-like gene is expressed primarily in the larval midgut and regulated during development, with high levels of expression observed in all instars and adults but not pupae. The corresponding genomic sequence spans more than 90 kb and is interspersed with 30 large introns. The genomic organization of the cadherin-like gene for this Coleopteran species bears strong resemblance to lepidopteran cadherins suggesting a common molecular basis for susceptibility to Cry3 toxins in Coleoptera.