The Experts below are selected from a list of 10104 Experts worldwide ranked by ideXlab platform

Gregor Bucher - One of the best experts on this subject based on the ideXlab platform.

  • iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.
    2014
    Co-Authors: Jürgen Dönitz, Michael Schoppmeier, Daniela Grossmann, Christian Schmitt-engel, Lizzy Gerischer, Maike Tech, Martin Klingler, Gregor Bucher
    Abstract:

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    Background The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far. Here we report the establishment of the GAL4/UAS binary expression system in Tribolium castaneum. Both GAL4Δ and GAL4VP16 driven by the endogenous heat shock inducible promoter of the Tribolium hsp68 gene are efficient in activating reporter gene expression under the control of the Upstream Activating Sequence (UAS). UAS driven ubiquitous tGFP fluorescence was observed in embryos within four hours after activation while in-situ hybridization against tGFP revealed expression already after two hours. The response is quick in relation to the duration of embryonic development in Tribolium - 72 hours with segmentation being completed after 24 hours - which makes the study of early embryonic processes possible using this system. By comparing the efficiency of constructs based on Tribolium, Drosophila, and artificial core promoters, respectively, we find that the use of endogenous core promoters is essential for high-level expression of transgenic constructs. With the established GAL4/UAS binary expression system, ectopic misexpression approaches are now feasible in Tribolium. Our results support the contention that high-level transgene expression usually requires endogenous regulatory sequences, including endogenous core promoters in Tribolium and probably also other model systems.

  • exploring systemic rna interference in insects a genome wide survey for rnai genes in Tribolium
    2008
    Co-Authors: Yoshinori Tomoyasu, Sherry Miller, Shuichiro Tomita, Michael Schoppmeier, Daniela Grossmann, Gregor Bucher
    Abstract:

    Background: RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results: We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion: Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches.

Markus Friedrich - One of the best experts on this subject based on the ideXlab platform.

Johannes B Schinko - One of the best experts on this subject based on the ideXlab platform.

  • efficient crispr mediated gene targeting and transgene replacement in the beetle Tribolium castaneum
    2015
    Co-Authors: Anna F Gilles, Johannes B Schinko, Michalis Averof
    Abstract:

    Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here, we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knockout and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knockouts; 71-100% carry such mutations in their germ line and transmit them to the next generation. We show that CRISPR-mediated gene knockout of the Tribolium E-cadherin gene causes defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marker transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    Background The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far. Here we report the establishment of the GAL4/UAS binary expression system in Tribolium castaneum. Both GAL4Δ and GAL4VP16 driven by the endogenous heat shock inducible promoter of the Tribolium hsp68 gene are efficient in activating reporter gene expression under the control of the Upstream Activating Sequence (UAS). UAS driven ubiquitous tGFP fluorescence was observed in embryos within four hours after activation while in-situ hybridization against tGFP revealed expression already after two hours. The response is quick in relation to the duration of embryonic development in Tribolium - 72 hours with segmentation being completed after 24 hours - which makes the study of early embryonic processes possible using this system. By comparing the efficiency of constructs based on Tribolium, Drosophila, and artificial core promoters, respectively, we find that the use of endogenous core promoters is essential for high-level expression of transgenic constructs. With the established GAL4/UAS binary expression system, ectopic misexpression approaches are now feasible in Tribolium. Our results support the contention that high-level transgene expression usually requires endogenous regulatory sequences, including endogenous core promoters in Tribolium and probably also other model systems.

Magdalena Jackowska - One of the best experts on this subject based on the ideXlab platform.

Michalis Averof - One of the best experts on this subject based on the ideXlab platform.

  • efficient crispr mediated gene targeting and transgene replacement in the beetle Tribolium castaneum
    2015
    Co-Authors: Anna F Gilles, Johannes B Schinko, Michalis Averof
    Abstract:

    Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here, we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knockout and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knockouts; 71-100% carry such mutations in their germ line and transmit them to the next generation. We show that CRISPR-mediated gene knockout of the Tribolium E-cadherin gene causes defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marker transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.

  • A segmentation clock operating in blastoderm and germband stages of Tribolium development
    2012
    Co-Authors: Ezzat El-sherif, Michalis Averof, Susan J. Brown
    Abstract:

    In Drosophila, all segments form in the blastoderm where morphogen gradients spanning the entire anterior-posterior axis of the embryo provide positional information. However, in the beetle Tribolium castaneum and most other arthropods, a number of anterior segments form in the blastoderm, and the remaining segments form sequentially from a posterior growth zone during germband elongation. Recently, the cyclic nature of the pair-rule gene Tc-odd-skipped was demonstrated in the growth zone of Tribolium, indicating that a vertebrate-like segmentation clock is employed in the germband stage of its development. This suggests that two mechanisms might function in the same organism: a Drosophila-like mechanism in the blastoderm, and a vertebrate-like mechanism in the germband. Here, we show that segmentation at both blastoderm and germband stages of Tribolium is based on a segmentation clock. Specifically, we show that the Tribolium primary pair-rule gene, Tc-even-skipped (Tc-eve), is expressed in waves propagating from the posterior pole and progressively slowing until they freeze into stripes; such dynamics are a hallmark of clock-based segmentation. Phase shifts between Tc-eve transcripts and protein confirm that these waves are due to expression dynamics. Moreover, by tracking cells in live embryos and by analyzing mitotic profiles, we found that neither cell movement nor oriented cell division could explain the observed wave dynamics of Tc-eve. These results pose intriguing evolutionary questions, as Drosophila and Tribolium segment their blastoderms using the same genes but different mechanisms.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    Background The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far.

  • functionality of the gal4 uas system in Tribolium requires the use of endogenous core promoters
    2010
    Co-Authors: Martin Klingler, Johannes B Schinko, Markus Weber, Ivana Viktorinova, Alexandros Kiupakis, Michalis Averof, Ernst A Wimmer, Gregor Bucher
    Abstract:

    The red flour beetle Tribolium castaneum has developed into an insect model system second only to Drosophila. Moreover, as a coleopteran it represents the most species-rich metazoan taxon which also includes many pest species. The genetic toolbox for Tribolium research has expanded in the past years but spatio-temporally controlled misexpression of genes has not been possible so far. Here we report the establishment of the GAL4/UAS binary expression system in Tribolium castaneum. Both GAL4Δ and GAL4VP16 driven by the endogenous heat shock inducible promoter of the Tribolium hsp68 gene are efficient in activating reporter gene expression under the control of the Upstream Activating Sequence (UAS). UAS driven ubiquitous tGFP fluorescence was observed in embryos within four hours after activation while in-situ hybridization against tGFP revealed expression already after two hours. The response is quick in relation to the duration of embryonic development in Tribolium - 72 hours with segmentation being completed after 24 hours - which makes the study of early embryonic processes possible using this system. By comparing the efficiency of constructs based on Tribolium, Drosophila, and artificial core promoters, respectively, we find that the use of endogenous core promoters is essential for high-level expression of transgenic constructs. With the established GAL4/UAS binary expression system, ectopic misexpression approaches are now feasible in Tribolium. Our results support the contention that high-level transgene expression usually requires endogenous regulatory sequences, including endogenous core promoters in Tribolium and probably also other model systems.