Coronas

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 9738 Experts worldwide ranked by ideXlab platform

J Lemaire - One of the best experts on this subject based on the ideXlab platform.

  • coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses
    Solar Physics, 2014
    Co-Authors: Viviane Pierrard, Kris Borremans, Koen Stegen, J Lemaire
    Abstract:

    Coronal density, temperature, and heat-flux distributions for the equatorial and polar corona have been deduced from Saito’s model of averaged coronal white-light (WL) brightness and polarization observations. These distributions are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates similar distributions at large radial distances (> 7 R⊙) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e. conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating extends up into the inner corona, where it maximizes at r>1.5 R⊙, well above the transition region.

  • coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses
    arXiv: Solar and Stellar Astrophysics, 2012
    Co-Authors: Viviane Pierrard, Kris Borremans, J Lemaire
    Abstract:

    Coronal density, temperature and heat flux distributions for the equatorial and polar corona have been deduced by Lemaire [2012] from Saito's model of averaged coronal white light (WL) brightness and polarization observations. They are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates rather similar distributions at large radial distances (> 7 Rs) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e., conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating rate extends up into the inner corona where it maximizes at r > 1.5 Rs well above the transition region.

Hardi Peter - One of the best experts on this subject based on the ideXlab platform.

  • using coronal seismology to estimate the magnetic field strength in a realistic coronal model
    Astronomy and Astrophysics, 2015
    Co-Authors: Feng Chen, Hardi Peter
    Abstract:

    Aims. Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods. From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions. Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology.

  • using coronal seismology to estimate the magnetic field strength in a realistic coronal model
    arXiv: Solar and Stellar Astrophysics, 2015
    Co-Authors: Feng Chen, Hardi Peter
    Abstract:

    Coronal seismology is extensively used to estimate properties of the corona, e.g. the coronal magnetic field strength are derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. From the simulation of the corona above an active region we synthesise extreme ultraviolet (EUV) emission from the model corona. From this we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5s and a damping time of 125s, both being consistent with the ranges of periods and damping times found in observation. Using standard coronal seismology techniques, we find an average magnetic field strength of $B_{\rm kink}=79$G for our loop in the simulation, while in the loop the field strength drops from some 300G at the coronal base to 50G at the apex. Using the data from our simulation we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube that would give the same wave travel time through the loop. Our model produced not only a realistic looking loop-dominated corona, but also provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology.

  • catastrophic cooling and cessation of heating in the solar corona
    Astronomy and Astrophysics, 2012
    Co-Authors: Hardi Peter, Sven Bingert, S Kamio
    Abstract:

    Context. Condensations in the more than 10 6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions. This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation.

  • catastrophic cooling and cessation of heating in the solar corona
    arXiv: Solar and Stellar Astrophysics, 2011
    Co-Authors: Hardi Peter, Sven Bingert, S Kamio
    Abstract:

    Condensations in the more than 10^6 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation.

Miloslav Druckmuller - One of the best experts on this subject based on the ideXlab platform.

  • coronal magnetic field topology from total solar eclipse observations
    Bulletin of the AAS, 2020
    Co-Authors: Benjamin Boe, Shadia Rifai Habbal, Miloslav Druckmuller
    Abstract:

    Measuring the global magnetic field of the solar corona remains exceptionally challenging. The fine-scale density structures observed in white light images taken during Total Solar Eclipses (TSEs) are currently the best proxy for inferring the magnetic field direction in the corona from the solar limb out to several solar radii (Rs). We present, for the first time, the topology of the coronal magnetic field continuously between 1 and 6 Rs, as quantitatively inferred with the Rolling Hough Transform (RHT) for 14 unique eclipse coronae that span almost two complete solar cycles. We find that the direction of the coronal magnetic field does not become radial until at least 3 Rs, with a high variance between 1.5 and 3 Rs at different latitudes and phases of the solar cycle. We find that the most non-radial coronal field topologies occur above regions with weaker magnetic field strengths in the photosphere, while stronger photospheric fields are associated with highly radial field lines in the corona. In addition, we find an abundance of field lines which extend continuously from the solar surface out to several solar radii at all latitudes, regardless of the presence of coronal holes. These results have implications for testing and constraining coronal magnetic field models, and for linking in situ solar wind measurements to their sources at the Sun.

  • comparing eclipse observations of the 2008 august 1 solar corona with an mhd model prediction
    Astronomy and Astrophysics, 2010
    Co-Authors: V Rusin, Miloslav Druckmuller, P Aniol, M Minarovjech, Metod Saniga, Z Mikic, J A Linker, R Lionello, P Riley, V S Titov
    Abstract:

    Context. The structure of the white-light and emission solar Coronas and their MHD modelling are the context of our work. Aims. A comparison is made between the structure of the solar corona as observed during the 2008 August 1 total eclipse from Mongolia and that predicted by an MHD model. Methods. The model has an improved energy formulation, including the effect of coronal heating, conduction of heat parallel to the magnetic field, radiative losses, and acceleration by Alfven waves. Results. The white-light corona, which was visible up to 20 solar radii, was of an intermediate type with well-pronounced helmet streamers situated above a chain of prominences at position angles of 48, 130, 241, and 322 degrees. Two polar coronal holes, filled with a plethora of thin polar plumes, were observed. High-quality pictures of the green (530.3 nm, Fe XIV) corona were obtained with the help of two narrow-passband filters (centered at the line itself and the vicinity of 529.1 nm background), with a FWHM of 0.15 nm. Conclusions. The large-scale shape of both the white-light and green corona was found to agree well with that predicted by the model. In this paper we describe the morphological properties of the observed corona, and how it compares with that predicted by the model. A more detailed analysis of the quantitative properties of the corona will be addressed in a future publication.

  • the 2008 august 1 eclipse solar minimum corona unraveled
    The Astrophysical Journal, 2009
    Co-Authors: Miloslav Druckmuller, V Rusin, P Aniol, Metod Saniga, Jay M Pasachoff, M Minarovjech
    Abstract:

    We discuss the results stemming from observations of the white-light and [Fe XIV] emission corona during the total eclipse of the Sun of 2008 August 1, in Mongolia (Altaj region) and in Russia (Akademgorodok, Novosibirsk, Siberia). Corresponding to the current extreme solar minimum, the white-light corona, visible up to 20 solar radii, was of a transient type with well pronounced helmet streamers situated above a chain of prominences at position angles 48°, 130°, 241°, and 322°. A variety of coronal holes, filled with a number of thin polar plumes, were seen around the poles. Furthering an original method of image processing, stars up to 12 mag, a Kreutz-group comet (C/2008 O1) and a coronal mass ejection (CME) were also detected, with the smallest resolvable structures being of, and at some places even less than, 1 arcsec. Differences, presumably motions, in the corona and prominences are seen even with the 19 minutes time difference between our sites. In addition to the high-resolution coronal images, which show the continuum corona (K-corona) that results from electron scattering of photospheric light, images of the overlapping green-emission-line (530.3 nm, [Fe XIV]) corona were obtained with the help of two narrow-passband filters (centered on the line itself and for the continuum in the vicinity of 529.1 nm, respectively), each with an FWHM of 0.15 nm. Through solar observations, on whose scheduling and details we consulted, with the Solar and Heliospheric Observatory, Hinode's XRT and SOT, Transition Region and Coronal Explorer, and STEREO, as well as Wilcox Solar Observatory and Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms, we set our eclipse observations in the context of the current unusually low and prolonged solar minimum.

Viviane Pierrard - One of the best experts on this subject based on the ideXlab platform.

  • coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses
    Solar Physics, 2014
    Co-Authors: Viviane Pierrard, Kris Borremans, Koen Stegen, J Lemaire
    Abstract:

    Coronal density, temperature, and heat-flux distributions for the equatorial and polar corona have been deduced from Saito’s model of averaged coronal white-light (WL) brightness and polarization observations. These distributions are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates similar distributions at large radial distances (> 7 R⊙) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e. conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating extends up into the inner corona, where it maximizes at r>1.5 R⊙, well above the transition region.

  • coronal temperature profiles obtained from kinetic models and from coronal brightness measurements obtained during solar eclipses
    arXiv: Solar and Stellar Astrophysics, 2012
    Co-Authors: Viviane Pierrard, Kris Borremans, J Lemaire
    Abstract:

    Coronal density, temperature and heat flux distributions for the equatorial and polar corona have been deduced by Lemaire [2012] from Saito's model of averaged coronal white light (WL) brightness and polarization observations. They are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates rather similar distributions at large radial distances (> 7 Rs) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e., conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating rate extends up into the inner corona where it maximizes at r > 1.5 Rs well above the transition region.

M Minarovjech - One of the best experts on this subject based on the ideXlab platform.

  • comparing eclipse observations of the 2008 august 1 solar corona with an mhd model prediction
    Astronomy and Astrophysics, 2010
    Co-Authors: V Rusin, Miloslav Druckmuller, P Aniol, M Minarovjech, Metod Saniga, Z Mikic, J A Linker, R Lionello, P Riley, V S Titov
    Abstract:

    Context. The structure of the white-light and emission solar Coronas and their MHD modelling are the context of our work. Aims. A comparison is made between the structure of the solar corona as observed during the 2008 August 1 total eclipse from Mongolia and that predicted by an MHD model. Methods. The model has an improved energy formulation, including the effect of coronal heating, conduction of heat parallel to the magnetic field, radiative losses, and acceleration by Alfven waves. Results. The white-light corona, which was visible up to 20 solar radii, was of an intermediate type with well-pronounced helmet streamers situated above a chain of prominences at position angles of 48, 130, 241, and 322 degrees. Two polar coronal holes, filled with a plethora of thin polar plumes, were observed. High-quality pictures of the green (530.3 nm, Fe XIV) corona were obtained with the help of two narrow-passband filters (centered at the line itself and the vicinity of 529.1 nm background), with a FWHM of 0.15 nm. Conclusions. The large-scale shape of both the white-light and green corona was found to agree well with that predicted by the model. In this paper we describe the morphological properties of the observed corona, and how it compares with that predicted by the model. A more detailed analysis of the quantitative properties of the corona will be addressed in a future publication.

  • the 2008 august 1 eclipse solar minimum corona unraveled
    The Astrophysical Journal, 2009
    Co-Authors: Miloslav Druckmuller, V Rusin, P Aniol, Metod Saniga, Jay M Pasachoff, M Minarovjech
    Abstract:

    We discuss the results stemming from observations of the white-light and [Fe XIV] emission corona during the total eclipse of the Sun of 2008 August 1, in Mongolia (Altaj region) and in Russia (Akademgorodok, Novosibirsk, Siberia). Corresponding to the current extreme solar minimum, the white-light corona, visible up to 20 solar radii, was of a transient type with well pronounced helmet streamers situated above a chain of prominences at position angles 48°, 130°, 241°, and 322°. A variety of coronal holes, filled with a number of thin polar plumes, were seen around the poles. Furthering an original method of image processing, stars up to 12 mag, a Kreutz-group comet (C/2008 O1) and a coronal mass ejection (CME) were also detected, with the smallest resolvable structures being of, and at some places even less than, 1 arcsec. Differences, presumably motions, in the corona and prominences are seen even with the 19 minutes time difference between our sites. In addition to the high-resolution coronal images, which show the continuum corona (K-corona) that results from electron scattering of photospheric light, images of the overlapping green-emission-line (530.3 nm, [Fe XIV]) corona were obtained with the help of two narrow-passband filters (centered on the line itself and for the continuum in the vicinity of 529.1 nm, respectively), each with an FWHM of 0.15 nm. Through solar observations, on whose scheduling and details we consulted, with the Solar and Heliospheric Observatory, Hinode's XRT and SOT, Transition Region and Coronal Explorer, and STEREO, as well as Wilcox Solar Observatory and Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms, we set our eclipse observations in the context of the current unusually low and prolonged solar minimum.