Covalent Structure

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 246 Experts worldwide ranked by ideXlab platform

Mei Hong - One of the best experts on this subject based on the ideXlab platform.

  • relaxation compensated difference spin diffusion nmr for detecting 13c 13c long range correlations in proteins and polysaccharides
    Journal of Biomolecular NMR, 2015
    Co-Authors: Tuo Wang, Jonathan K Williams, Klaus Schmidtrohr, Mei Hong
    Abstract:

    The measurement of long-range distances remains a challenge in solid-state NMR Structure determination of biological macromolecules. In 2D and 3D correlation spectra of uniformly 13C-labeled biomolecules, inter-residue, inter-segmental, and intermolecular 13C–13C cross peaks that provide important long-range distance constraints for three-dimensional Structures often overlap with short-range cross peaks that only reflect the Covalent Structure of the molecule. It is therefore desirable to develop new approaches to obtain spectra containing only long-range cross peaks. Here we show that a relaxation-compensated modification of the commonly used 2D 1H-driven spin diffusion (PDSD) experiment allows the clean detection of such long-range cross peaks. By adding a z-filter to keep the total z-period of the experiment constant, we compensate for 13C T1 relaxation. As a result, the difference spectrum between a long- and a scaled short-mixing time spectrum show only long-range correlation signals. We show that one- and two-bond cross peaks equalize within a few tens of milliseconds. Within ~200 ms, the intensity equilibrates within an amino acid residue and a monosaccharide to a value that reflects the number of spins in the local network. With T1 relaxation compensation, at longer mixing times, inter-residue and inter-segmental cross peaks increase in intensity whereas intra-segmental cross-peak intensities remain unchanged relative to each other and can all be subtracted out. Without relaxation compensation, the difference 2D spectra exhibit both negative and positive intensities due to heterogeneous T1 relaxation in most biomolecules, which can cause peak cancellation. We demonstrate this relaxation-compensated difference PDSD approach on amino acids, monosaccharides, a crystalline model peptide, a membrane-bound peptide and a plant cell wall sample. The resulting difference spectra yield clean multi-bond, inter-residue and intermolecular correlation peaks, which are often difficult to resolve in the parent 2D spectra.

J Van Beeumen - One of the best experts on this subject based on the ideXlab platform.

  • Covalent Structure of the flavoprotein subunit of the flavocytochrome c sulfide dehydrogenase from the purple phototrophic bacterium chromatium vinosum
    Protein Science, 1996
    Co-Authors: G Van Driessche, T E Meyer, R G Bartsch, Ma Cusanovich, Monjoo Koh, Z W Chen, F S Mathews, J Van Beeumen
    Abstract:

    The amino acid sequence of the flavoprotein subunit of Chromatium vinosum flavocytochrome c-sulfide dehydrogenase (FCSD) was determined by automated Edman degradation and mass spectrometry in conjunction with the three-dimensional Structure determination (Chen Z et al., 1994, Science 266:430-432). The sequence of the diheme cytochrome c subunit was determined previously. The flavoprotein contains 401 residues and has a calculated protein mass, including FAD, of 43,568 Da, compared with a mass of 43,652 +/- 44 Da measured by LDMS. There are six cysteine residues, among which Cys 42 provides the site of Covalent attachment of the FAD. Cys 161 and Cys 337 form a disulfide bond adjacent to the FAD. The flavoprotein subunit of FCSD is most closely related to glutathione reductase (GR) in three-dimensional Structure and, like that protein, contains three domains. However, approximately 20 insertions and deletions are necessary for alignment and the overall identity in sequence is not significantly greater than for random comparisons. The first domain binds FAD in both proteins. Domain 2 of GR is the site of NADP binding, but has an unknown role in FCSD. We postulate that it is the binding site for a cofactor involved in oxidation of reduced sulfur compounds. Domains 1 and 2 of FCSD, as of GR, are homologous to one another and represent an ancient gene doubling. The third domain provides the dimerization interface for GR, but is the site of binding of the cytochrome subunit in FCSD. The four functional entities, predicted to be near the FAD from earlier studies of the kinetics of sulfite adduct formation and decay, have now been identified from the three-dimensional Structure and the sequence as Cys 161/Cys 337 disulfide, Trp 391, Glu 167, and the positive end of a helix dipole.

  • Covalent Structure of the diheme cytochrome subunit and amino terminal sequence of the flavoprotein subunit of flavocytochrome c from chromatium vinosum
    Journal of Biological Chemistry, 1991
    Co-Authors: J Van Beeumen, T E Meyer, Hans Demol, Bart Samyn, R G Bartsch, M M Dolata, Ma Cusanovich
    Abstract:

    The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.

Ma Cusanovich - One of the best experts on this subject based on the ideXlab platform.

  • Covalent Structure of the flavoprotein subunit of the flavocytochrome c sulfide dehydrogenase from the purple phototrophic bacterium chromatium vinosum
    Protein Science, 1996
    Co-Authors: G Van Driessche, T E Meyer, R G Bartsch, Ma Cusanovich, Monjoo Koh, Z W Chen, F S Mathews, J Van Beeumen
    Abstract:

    The amino acid sequence of the flavoprotein subunit of Chromatium vinosum flavocytochrome c-sulfide dehydrogenase (FCSD) was determined by automated Edman degradation and mass spectrometry in conjunction with the three-dimensional Structure determination (Chen Z et al., 1994, Science 266:430-432). The sequence of the diheme cytochrome c subunit was determined previously. The flavoprotein contains 401 residues and has a calculated protein mass, including FAD, of 43,568 Da, compared with a mass of 43,652 +/- 44 Da measured by LDMS. There are six cysteine residues, among which Cys 42 provides the site of Covalent attachment of the FAD. Cys 161 and Cys 337 form a disulfide bond adjacent to the FAD. The flavoprotein subunit of FCSD is most closely related to glutathione reductase (GR) in three-dimensional Structure and, like that protein, contains three domains. However, approximately 20 insertions and deletions are necessary for alignment and the overall identity in sequence is not significantly greater than for random comparisons. The first domain binds FAD in both proteins. Domain 2 of GR is the site of NADP binding, but has an unknown role in FCSD. We postulate that it is the binding site for a cofactor involved in oxidation of reduced sulfur compounds. Domains 1 and 2 of FCSD, as of GR, are homologous to one another and represent an ancient gene doubling. The third domain provides the dimerization interface for GR, but is the site of binding of the cytochrome subunit in FCSD. The four functional entities, predicted to be near the FAD from earlier studies of the kinetics of sulfite adduct formation and decay, have now been identified from the three-dimensional Structure and the sequence as Cys 161/Cys 337 disulfide, Trp 391, Glu 167, and the positive end of a helix dipole.

  • Covalent Structure of the diheme cytochrome subunit and amino terminal sequence of the flavoprotein subunit of flavocytochrome c from chromatium vinosum
    Journal of Biological Chemistry, 1991
    Co-Authors: J Van Beeumen, T E Meyer, Hans Demol, Bart Samyn, R G Bartsch, M M Dolata, Ma Cusanovich
    Abstract:

    The complete sequence of the 21-kDa cytochrome subunit of the flavocytochrome c (FC) from the purple phototrophic bacterium Chromatium vinosum has been determined to be as follows: EPTAEMLTNNCAGCHG THGNSVGPASPSIAQMDPMVFVEVMEGFKSGEIAS TIMGRIAKGYSTADFEKMAGYFKQQTYQPAKQSF DTALADTGAKLHDKYCEKCHVEGGKPLADEEDY HILAGQWTPYLQYAMSDFREERRPMEKKMASKL RELLKAEGDAGLDALFAFYASQQ. The sequence is the first example of a diheme cytochrome in a flavocytochrome complex. Although the locations of the heme binding sites and the heme ligands suggest that the cytochrome subunit is the result of gene doubling of a type I cytochrome c, as found with Azotobacter cytochrome c4, the extremely low similarity of only 7% between the two halves of the Chromatium FC heme subunit rather suggests that gene fusion is at the evolutionary origin of this cytochrome. The two halves also require a single residue internal deletion for alignment. The first half of the Chromatium FC heme subunit is 39% similar to the monoheme subunit of the FC from the green phototrophic bacterium Chlorobium thiosulfatophilum, but the second half is only 9% similar to the Chlorobium subunit. The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT. It shows more similarity to the Chlorobium FC flavin subunit (60%) than do the two heme subunits. The N terminus of the flavin subunit is homologous to a number of flavoproteins, including succinate dehydrogenase, glutathione reductase, and monamine oxidase. There is no obvious homology to the Pseudomonas putida FC flavin subunit, which suggests that the two types of flavocytochrome c arose by convergent evolution. This is consistent with the dissimilar enzyme activities of FC as sulfide dehydrogenase in the phototrophic bacteria and as p-cresol methylhydroxylase in Pseudomonas. We also present a sequence "fingerprint" pattern for the recognition of FAD-binding proteins which is an extended version of the consensus sequence previously presented (Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) J. Mol. Biol. 187, 101-107) for nucleotide binding sites.

Antoine Delfour - One of the best experts on this subject based on the ideXlab platform.

  • Covalent Structure synthesis and Structure function studies of mesentericin y 105 37 a defensive peptide from gram positive bacteria leuconostoc mesenteroides
    Journal of Biological Chemistry, 1996
    Co-Authors: Yannick Fleury, Manal A Dayem, Jean Jacques Montagne, Eddy Chaboisseau, Jean Pierre Le Caer, Pierre Nicolas, Antoine Delfour
    Abstract:

    Abstract A 37-residue cationic antimicrobial peptide named mesentericin Y 10537 was purified to homogeneity from cell-free culture supernatant of the Gram-positive bacterium Leuconostoc mesenteroides. The complete amino acid sequence of the peptide, KYYGNGVHCTKSGCSVNWGEAASAGIHRLANGGNGFW, has been established by automated Edman degradation, mass spectrometry, and solid phase synthesis. Mesentericin Y 10537 contains a single intramolecular disulfide bond that forms a 6-membered ring within the molecule. Mesentericin Y 10537 was synthesized by the solid phase method. The synthetic replicate was shown to be indistinguishable from the natural peptide with respect to electrophoretic and chromatographic properties, mass spectrometry analysis, automated amino acid sequence determination, and antimicrobial properties. At nanomolar concentrations, synthetic mesentericin Y 10537 is active against Gram+ bacteria in the genera Lactobacillus and Carnobacterium. Most interestingly, the peptide is inhibitory to the growth of the food-borne pathogen Listeria. CD spectra of mesentericin Y 10537 in low polarity medium, which mimic the lipophilicity of the membrane of target organisms, indicated 30–40% α-helical conformation, and predictions of secondary Structure suggested that the peptide can be configured as an amphipathic helix spanning over residues 17–31. To reveal the molecular basis of the specificity of mesentericin Y 10537 targetting and mode of action, NH2- or COOH-terminally truncated analogs together with point-substituted analogs were synthesized and evaluated for their ability to inhibit the growth of Listeria ivanovii. In sharp contrast with broad spectrum α-helical antimicrobial peptides from vertebrate animals, which can be shortened to 14–18 residues without deleterious effect on potency, molecular elements responsible for anti-Listeria activity of mesentericin Y 10537 are to be traced at once to the NH2-terminal tripeptide KYY, the disulfide bridge, the putative α-helical domain 17–31, and the COOH-terminal tryptophan residue of the molecule. It is proposed that the amphipathic helical domain of the peptide interacts with lipid bilayers, leading subsequently to alteration of the membrane functions, whereas residues 1–14 form part of a recognition Structure for a membrane-bound receptor, which may be critical for peptide targetting. Because mesentericin Y 10537 is easy to synthesize at low cost, it may represent a useful and tractable tool as a starting point for the design of more potent analogs that may be of potential applicability in foods preservation.

Susumu Tsunasawa - One of the best experts on this subject based on the ideXlab platform.

  • a simple and highly successful c terminal sequence analysis of proteins by mass spectrometry
    Proteomics, 2008
    Co-Authors: Hiroki Kuyama, Keisuke Shima, Kazuhiro Sonomura, Minoru Yamaguchi, Eiji Ando, Osamu Nishimura, Susumu Tsunasawa
    Abstract:

    A simple and efficient method for C-terminal sequencing of proteins has long been pursued because it would provide substantial information for identifying the Covalent Structure, including post-translational modifications. However, there are still significant impediments to both direct sequencing from C termini of proteins and specific isolation of C-terminal peptides from proteins. We describe here a highly successful, de novo C-terminal sequencing method of proteins by employing succinimidyloxycarbonylmethyl tris (2,4,6-trimethoxyphenyl) phosphonium bromide and mass spectrometry.