Default Permission

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 627 Experts worldwide ranked by ideXlab platform

Wijesekera Primal - One of the best experts on this subject based on the ideXlab platform.

  • Contextual Permission models for better privacy protection
    University of British Columbia, 2018
    Co-Authors: Wijesekera Primal
    Abstract:

    Despite corporate cyber intrusions attracting all the attention, privacy breaches that we, as ordinary users, should be worried about occur every day without any scrutiny. Smartphones, a household item, have inadvertently become a major enabler of privacy breaches. Smartphone platforms use Permission systems to regulate access to sensitive resources. These Permission systems, however, lack the ability to understand users' privacy expectations leaving a significant gap between how Permission models behave and how users would want the platform to protect their sensitive data. This dissertation provides an in-depth analysis of how users make privacy decisions in the context of Smartphones and how platforms can accommodate user's privacy requirements systematically. We first performed a 36-person field study to quantify how often applications access protected resources when users are not expecting it. We found that when the application requesting the Permission is running invisibly to the user, they are more likely to deny applications access to protected resources. At least 80% of our participants would have preferred to prevent at least one Permission request. To explore the feasibility of predicting user's privacy decisions based on their past decisions, we performed a longitudinal 131-person field study. Based on the data, we built a classifier to make privacy decisions on the user's behalf by detecting when the context has changed and inferring privacy preferences based on the user's past decisions. We showed that our approach can accurately predict users' privacy decisions 96.8% of the time, which is an 80% reduction in error rate compared to current systems. Based on these findings, we developed a custom Android version with a contextually aware Permission model. The new model guards resources based on user's past decisions under similar contextual circumstances. We performed a 38-person field study to measure the efficiency and usability of the new Permission model. Based on exit interviews and 5M data points, we found that the new system is effective in reducing the potential violations by 75%. Despite being significantly more restrictive over the Default Permission systems, participants did not find the new model to cause any usability issues in terms of application functionality.Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat

Heuser Stephan - One of the best experts on this subject based on the ideXlab platform.

  • Towards Modular and Flexible Access Control on Smart Mobile Devices
    2016
    Co-Authors: Heuser Stephan
    Abstract:

    Smart mobile devices, such as smartphones and tablets, have become an integral part of our daily personal and professional lives. These devices are connected to a wide variety of Internet services and host a vast amount of applications, which access, store and process security- and privacy-sensitive data. A rich set of sensors, ranging from microphones and cameras to location and acceleration sensors, allows these applications and their back end services to reason about user behavior. Further, enterprise administrators integrate smart mobile devices into their IT infrastructures to enable comfortable work on the go. Unsurprisingly, this abundance of available high-quality information has made smart mobile devices an interesting target for attackers, and the number of malicious and privacy-intrusive applications has steadily been rising. Detection and mitigation of such malicious behavior are in focus of mobile security research today. In particular, the Android operating system has received special attention by both academia and industry due to its popularity and open-source character. Related work has scrutinized its security architecture, analyzed attack vectors and vulnerabilities and proposed a wide variety of security extensions. While these extensions have diverse goals, many of them constitute modifications of the Android operating system and extend its Default Permission-based access control model. However, they are not generic and only address specific security and privacy concerns. The goal of this dissertation is to provide generic and extensible system-centric access control architectures, which can serve as a solid foundation for the instantiation of use-case specific security extensions. In doing so, we enable security researchers, enterprise administrators and end users to design, deploy and distribute security extensions without further modification of the underlying operating system. To achieve this goal, we first analyze the mobile device ecosystem and discuss how Android's security architecture aims to address its inherent threats. We proceed to survey related work on Android security, focusing on system-centric security extensions, and derive a set of generic requirements for extensible access control architectures targeting smart mobile devices. We then present two extensible access control architectures, which address these requirements by providing policy-based and programmable interfaces for the instantiation of use-case specific security solutions. By implementing a set of practical use-cases, ranging from context-aware access control, dynamic application behavior analysis to isolation of security domains we demonstrate the advantages of system-centric access control architectures over application-layer approaches. Finally, we conclude this dissertation by discussing an alternative approach, which is based on application-layer deputies and can be deployed whenever practical limitations prohibit the deployment of system-centric solutions