Evolutionary Radiation

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 23058 Experts worldwide ranked by ideXlab platform

Eva V Barmann - One of the best experts on this subject based on the ideXlab platform.

  • a phylogenetic study of late growth events in a mammalian Evolutionary Radiation the cranial sutures of terrestrial artiodactyl mammals
    Journal of Mammalian Evolution, 2012
    Co-Authors: Eva V Barmann, Marcelo R Sanchezvillagra
    Abstract:

    We recorded the relative timing of fusion of 29 ectocranial sutures in 480 skulls belonging to 35 extant and four fossil species from all major clades of terrestrial artiodactyls. The resulting data were studied in a phylogenetic context, using mapping of event-pairing of suture fusion events and Parsimov. As phylogenetic framework we generated a compound phylogeny from several previously published analyses. Overall suture closure per species ranged from five to all 29 sutures in Hexaprotodon. All living non-ruminants (suids, camelids, and hippopotamids) fuse more than 50% of the studied sutures (most over 75%), whereas in almost all ruminants less than 50% of the sutures fuse completely. Phylogenetic regression found a significant correlation between suture closure and body mass. In all species we observed an early fusion of the sutures surrounding the foramen magnum (Exoccipital-Supraoccipital, Exoccipital-Basioccipital), a consistent scheme also among other mammals. Scaling the number of changes to the number of sutures in each of the usually recognized skull modules reveals relatively equal numbers of changes in the cranial vault, the zygomatic-sphenoid region, the orbit, and the anterior oral-nasal region. Only the basicranium shows a much smaller number in terms of absolute and relative amount of suture fusion change. Some species show a unique pattern of suture fusion, such as the early fusion of many sutures in the palatal region in Pecari or that of premaxillary sutures in †Cainotherium, perhaps related to feeding mode. A strategy to strengthen the skull by obliterating the sutures could explain the pattern of increased sutural fusion in ruminant species with large cranial appendages.

  • A Phylogenetic Study of Late Growth Events in a Mammalian Evolutionary Radiation—The Cranial Sutures of Terrestrial Artiodactyl Mammals
    Journal of Mammalian Evolution, 2012
    Co-Authors: Eva V Barmann, Marcelo R. Sánchez-villagra
    Abstract:

    We recorded the relative timing of fusion of 29 ectocranial sutures in 480 skulls belonging to 35 extant and four fossil species from all major clades of terrestrial artiodactyls. The resulting data were studied in a phylogenetic context, using mapping of event-pairing of suture fusion events and Parsimov. As phylogenetic framework we generated a compound phylogeny from several previously published analyses. Overall suture closure per species ranged from five to all 29 sutures in Hexaprotodon . All living non-ruminants (suids, camelids, and hippopotamids) fuse more than 50% of the studied sutures (most over 75%), whereas in almost all ruminants less than 50% of the sutures fuse completely. Phylogenetic regression found a significant correlation between suture closure and body mass. In all species we observed an early fusion of the sutures surrounding the foramen magnum (Exoccipital-Supraoccipital, Exoccipital-Basioccipital), a consistent scheme also among other mammals. Scaling the number of changes to the number of sutures in each of the usually recognized skull modules reveals relatively equal numbers of changes in the cranial vault, the zygomatic-sphenoid region, the orbit, and the anterior oral-nasal region. Only the basicranium shows a much smaller number in terms of absolute and relative amount of suture fusion change. Some species show a unique pattern of suture fusion, such as the early fusion of many sutures in the palatal region in Pecari or that of premaxillary sutures in † Cainotherium , perhaps related to feeding mode. A strategy to strengthen the skull by obliterating the sutures could explain the pattern of increased sutural fusion in ruminant species with large cranial appendages.

Marcelo R Sanchezvillagra - One of the best experts on this subject based on the ideXlab platform.

  • a phylogenetic study of late growth events in a mammalian Evolutionary Radiation the cranial sutures of terrestrial artiodactyl mammals
    Journal of Mammalian Evolution, 2012
    Co-Authors: Eva V Barmann, Marcelo R Sanchezvillagra
    Abstract:

    We recorded the relative timing of fusion of 29 ectocranial sutures in 480 skulls belonging to 35 extant and four fossil species from all major clades of terrestrial artiodactyls. The resulting data were studied in a phylogenetic context, using mapping of event-pairing of suture fusion events and Parsimov. As phylogenetic framework we generated a compound phylogeny from several previously published analyses. Overall suture closure per species ranged from five to all 29 sutures in Hexaprotodon. All living non-ruminants (suids, camelids, and hippopotamids) fuse more than 50% of the studied sutures (most over 75%), whereas in almost all ruminants less than 50% of the sutures fuse completely. Phylogenetic regression found a significant correlation between suture closure and body mass. In all species we observed an early fusion of the sutures surrounding the foramen magnum (Exoccipital-Supraoccipital, Exoccipital-Basioccipital), a consistent scheme also among other mammals. Scaling the number of changes to the number of sutures in each of the usually recognized skull modules reveals relatively equal numbers of changes in the cranial vault, the zygomatic-sphenoid region, the orbit, and the anterior oral-nasal region. Only the basicranium shows a much smaller number in terms of absolute and relative amount of suture fusion change. Some species show a unique pattern of suture fusion, such as the early fusion of many sutures in the palatal region in Pecari or that of premaxillary sutures in †Cainotherium, perhaps related to feeding mode. A strategy to strengthen the skull by obliterating the sutures could explain the pattern of increased sutural fusion in ruminant species with large cranial appendages.

Marcelo R. Sánchez-villagra - One of the best experts on this subject based on the ideXlab platform.

  • A Phylogenetic Study of Late Growth Events in a Mammalian Evolutionary Radiation—The Cranial Sutures of Terrestrial Artiodactyl Mammals
    Journal of Mammalian Evolution, 2012
    Co-Authors: Eva V Barmann, Marcelo R. Sánchez-villagra
    Abstract:

    We recorded the relative timing of fusion of 29 ectocranial sutures in 480 skulls belonging to 35 extant and four fossil species from all major clades of terrestrial artiodactyls. The resulting data were studied in a phylogenetic context, using mapping of event-pairing of suture fusion events and Parsimov. As phylogenetic framework we generated a compound phylogeny from several previously published analyses. Overall suture closure per species ranged from five to all 29 sutures in Hexaprotodon . All living non-ruminants (suids, camelids, and hippopotamids) fuse more than 50% of the studied sutures (most over 75%), whereas in almost all ruminants less than 50% of the sutures fuse completely. Phylogenetic regression found a significant correlation between suture closure and body mass. In all species we observed an early fusion of the sutures surrounding the foramen magnum (Exoccipital-Supraoccipital, Exoccipital-Basioccipital), a consistent scheme also among other mammals. Scaling the number of changes to the number of sutures in each of the usually recognized skull modules reveals relatively equal numbers of changes in the cranial vault, the zygomatic-sphenoid region, the orbit, and the anterior oral-nasal region. Only the basicranium shows a much smaller number in terms of absolute and relative amount of suture fusion change. Some species show a unique pattern of suture fusion, such as the early fusion of many sutures in the palatal region in Pecari or that of premaxillary sutures in † Cainotherium , perhaps related to feeding mode. A strategy to strengthen the skull by obliterating the sutures could explain the pattern of increased sutural fusion in ruminant species with large cranial appendages.

Emmanuel Douzery - One of the best experts on this subject based on the ideXlab platform.

  • The Evolutionary Radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies
    BMC Evolutionary Biology, 2006
    Co-Authors: Thomas Galewski, Marie-ka Tilak, Sophie Sanchez, Pascale Chevret, Emmanuel Paradis, Emmanuel Douzery
    Abstract:

    Background: Mitochondrial and nuclear genes have generally been employed for different purposes in molecular systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies at a deeper level. In the case of rapid and recent Evolutionary Radiations, mitochondrial genes like cytochrome b (CYB) are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae rodents (Rodentia; Muridae), the most impressive mammalian Radiation of the Northern Hemisphere which produced voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker-the exon 10 of the growth hormone receptor (GHR) gene-to the one of the mitochondrial CYB for inferring phylogenetic relationships among the major lineages of arvicoline rodents. Results: The analysis of GHR sequences improves the overall resolution of the Arvicolinae phylogeny. Our results show that the Caucasian long-clawed vole (Prometheomys schaposnikowi) is one of the basalmost arvicolines, and confirm that true lemmings (Lemmus) and collared lemmings (Dicrostonyx) are not closely related as suggested by morphology. Red-backed voles (Myodini) are found as the sister-group of a clade encompassing water vole (Arvicola), snow vole (Chionomys), and meadow voles (Microtus and allies). Within the latter, no support is recovered for the generic recognition of Blanfordimys, Lasiopodomys, Neodon, and Phaiomys as suggested by morphology. Comparisons of parameter estimates for branch lengths, base composition, among sites rate heterogeneity, and GTR relative substitution rates indicate that CYB sequences consistently exhibit more heterogeneity among codon positions than GHR. By analyzing the contribution of each codon position to node resolution, we show that the apparent higher efficiency of GHR is due to their third positions. Although we focus on speciation events spanning the last 10 million years (Myr), CYB sequences display highly saturated codon positions contrary to the nuclear exon. Lastly, variable length bootstrap predicts a significant increase in resolution of arvicoline phylogeny through the sequencing of nuclear data in an order of magnitude three to five times greater than the size of GHR exon 10. Conclusion: Our survey provides a first resolved gene tree for Arvicolinae. The comparison of CYB and GHR phylogenetic efficiency supports recent assertions that nuclear genes are useful for resolving relationships of recently evolved animals. The superiority of nuclear exons may reside both in (i) less heterogeneity among sites, and (ii) the presence of highly informative sites in third codon positions, that evolve rapidly enough to accumulate synapomorphies, but slow enough to avoid substitutional saturation.

  • The Evolutionary Radiation of Arvicolinae rodents (voles and lemmings): relative contribution of nuclear and mitochondrial DNA phylogenies
    BMC Evolutionary Biology, 2006
    Co-Authors: Thomas Galewski, Marie-ka Tilak, Sophie Sanchez, Pascale Chevret, Emmanuel Paradis, Emmanuel Douzery
    Abstract:

    Background Mitochondrial and nuclear genes have generally been employed for different purposes in molecular systematics, the former to resolve relationships within recently evolved groups and the latter to investigate phylogenies at a deeper level. In the case of rapid and recent Evolutionary Radiations, mitochondrial genes like cytochrome b (CYB) are often inefficient for resolving phylogenetic relationships. One of the best examples is illustrated by Arvicolinae rodents (Rodentia; Muridae), the most impressive mammalian Radiation of the Northern Hemisphere which produced voles, lemmings and muskrats. Here, we compare the relative contribution of a nuclear marker – the exon 10 of the growth hormone receptor (GHR) gene – to the one of the mitochondrial CYB for inferring phylogenetic relationships among the major lineages of arvicoline rodents.

Jonathan T Davies - One of the best experts on this subject based on the ideXlab platform.

  • understanding the processes underpinning patterns of phylogenetic regionalization
    Trends in Ecology and Evolution, 2017
    Co-Authors: Tammy L Elliott, Barnabas H Daru, Daniel S Park, Jonathan T Davies
    Abstract:

    A key step in understanding the distribution of biodiversity is the grouping of regions based on their shared elements. Historically, regionalization schemes have been largely species centric. Recently, there has been interest in incorporating phylogenetic information into regionalization schemes. Phylogenetic regionalization can provide novel insights into the mechanisms that generate, distribute, and maintain biodiversity. We argue that four processes (dispersal limitation, extinction, speciation, and niche conservatism) underlie the formation of species assemblages into phylogenetically distinct biogeographic units. We outline how it can be possible to distinguish among these processes, and identify centers of Evolutionary Radiation, museums of diversity, and extinction hotspots. We suggest that phylogenetic regionalization provides a rigorous and objective classification of regional diversity and enhances our knowledge of biodiversity patterns.