Gas Furnace

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 171 Experts worldwide ranked by ideXlab platform

Francesco Melino - One of the best experts on this subject based on the ideXlab platform.

  • thermo photo voltaic generator development
    Energy Procedia, 2014
    Co-Authors: Claudio Ferrari, Francesco Melino
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo–Photo–Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. In this paper, the main research activities on thermophotovoltaic generation developed in the last years at Institute of Materials for Electronics and Magnetism (IMEM) of Italian National Research Council (CNR), of will be presented and discussed.

  • Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings
    Applied Energy, 2012
    Co-Authors: Michele Bianchi, Claudio Ferrari, Francesco Melino, Antonio Peretto
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

Claudio Ferrari - One of the best experts on this subject based on the ideXlab platform.

  • thermo photo voltaic generator development
    Energy Procedia, 2014
    Co-Authors: Claudio Ferrari, Francesco Melino
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo–Photo–Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. In this paper, the main research activities on thermophotovoltaic generation developed in the last years at Institute of Materials for Electronics and Magnetism (IMEM) of Italian National Research Council (CNR), of will be presented and discussed.

  • Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings
    Applied Energy, 2012
    Co-Authors: Michele Bianchi, Claudio Ferrari, Francesco Melino, Antonio Peretto
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

Antonio Peretto - One of the best experts on this subject based on the ideXlab platform.

  • Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings
    Applied Energy, 2012
    Co-Authors: Michele Bianchi, Claudio Ferrari, Francesco Melino, Antonio Peretto
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

Michele Bianchi - One of the best experts on this subject based on the ideXlab platform.

  • Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings
    Applied Energy, 2012
    Co-Authors: Michele Bianchi, Claudio Ferrari, Francesco Melino, Antonio Peretto
    Abstract:

    Abstract The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse Gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic Gas Furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

J A Szpunar - One of the best experts on this subject based on the ideXlab platform.

  • ebsd studies on microstructure and crystallographic orientation of δ hydrides in zircaloy 4 zr 1 nb and zr 2 5 nb
    Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2011
    Co-Authors: N Kiran A P Kumar, J A Szpunar
    Abstract:

    Abstract The Zr–Nb alloys are reported to be showing superior resistance to corrosion and substantially lower hydrogen pickup when compared with Zircaloy. In the present study Zircaloy-4, Zr–2.5Nb and Zr–1Nb (E110) alloys were hydrided using high pressure hydrogen Gas Furnace at a pressure of 20 MPa. Hydriding was done by thermal cycling on the samples at a temperature of 350 °C for 10 cycles with 5 h soaking time. The microstructural observations on Zircaloy-4 and Zr–2.5Nb samples show long and interlinked hydride like chains, oriented along the circumferential direction. Whereas, in Zr–1Nb (E110) hydrides were short, thick without any preferential orientation with respect to the sample reference direction. Electron backscatter diffraction (EBSD) map shows the presence of β1 phase in two phased Zr–1Nb, Zr–2.5Nb samples. Heavy { 1 0 1 ¯ 2 } 1 0 1 ¯ 1 ¯ tensile twins and { 1 0 1 ¯ 1 } 1 0 1 ¯ 2 compression twins were observed in Zr–1Nb. Hydrides in Zircaloy-4 and Zr–2.5Nb have shown (0 0 0 1)α-Zr//{1 1 1}-ZrH1.5 orientation with α-matrix whereas almost 50% of hydrides in Zr–1Nb (E110) alloy are showing (0 0 0 1) α-Zr//{1 0 0} δ-ZrH1.5 crystallographic relation. The (0 0 0 1)α-Zr//{1 0 0}δ-ZrH1.5 orientation of hydrides in Zr–1Nb (E110) is observed for the hydrides formed at the twin boundaries.