Gel Polarization

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6093 Experts worldwide ranked by ideXlab platform

Peter Czermak - One of the best experts on this subject based on the ideXlab platform.

  • minimizing the process time for ultrafiltration diafiltration under Gel Polarization conditions
    Journal of Membrane Science, 2011
    Co-Authors: Radoslav Paulen, Miroslav Fikar, Greg Foley, Peter Czermak, Zoltan Kovacs
    Abstract:

    Abstract This study examines a generalized ultrafiltration/diafiltration process that is designed to reduce the initial volume of a given process liqueur and to eliminate impurities from the product solution. This theoretical investigation focuses on applications where the permeate flux is given by the Gel Polarization model. The goal of this paper is to use optimal control theory to determine optimal time-varying diluant addition that minimizes treatment time. We propose a diafiltration model in a dimensionless form with normalized model equations in order to determine general features of optimal diluant utilization strategy. Based on the model, we formulate the optimal control problem and apply the theory of optimal control exploiting the Pontryagin’s minimum principle. We confirm the analytical results by numerical computations using numerical methods of dynamic optimization. We prove that optimal control strategy is to perform a constant-volume diafiltration step at optimal macro-solute concentration that guarantees maximal removal of micro-solute at any time instant. This constant-volume diafiltration step is preceded and followed by optional ultrafiltration or pure dilution steps that force the concentrations at first to arrive to the optimal macro-solute concentration and at last to arrive to the desired final concentrations. Finally, we provide practical optimization diagrams that allow decision makers to determine the optimal diluant control of a given separation task.

Radoslav Paulen - One of the best experts on this subject based on the ideXlab platform.

  • minimizing the process time for ultrafiltration diafiltration under Gel Polarization conditions
    Journal of Membrane Science, 2011
    Co-Authors: Radoslav Paulen, Miroslav Fikar, Greg Foley, Peter Czermak, Zoltan Kovacs
    Abstract:

    Abstract This study examines a generalized ultrafiltration/diafiltration process that is designed to reduce the initial volume of a given process liqueur and to eliminate impurities from the product solution. This theoretical investigation focuses on applications where the permeate flux is given by the Gel Polarization model. The goal of this paper is to use optimal control theory to determine optimal time-varying diluant addition that minimizes treatment time. We propose a diafiltration model in a dimensionless form with normalized model equations in order to determine general features of optimal diluant utilization strategy. Based on the model, we formulate the optimal control problem and apply the theory of optimal control exploiting the Pontryagin’s minimum principle. We confirm the analytical results by numerical computations using numerical methods of dynamic optimization. We prove that optimal control strategy is to perform a constant-volume diafiltration step at optimal macro-solute concentration that guarantees maximal removal of micro-solute at any time instant. This constant-volume diafiltration step is preceded and followed by optional ultrafiltration or pure dilution steps that force the concentrations at first to arrive to the optimal macro-solute concentration and at last to arrive to the desired final concentrations. Finally, we provide practical optimization diagrams that allow decision makers to determine the optimal diluant control of a given separation task.

Miroslav Fikar - One of the best experts on this subject based on the ideXlab platform.

  • minimizing the process time for ultrafiltration diafiltration under Gel Polarization conditions
    Journal of Membrane Science, 2011
    Co-Authors: Radoslav Paulen, Miroslav Fikar, Greg Foley, Peter Czermak, Zoltan Kovacs
    Abstract:

    Abstract This study examines a generalized ultrafiltration/diafiltration process that is designed to reduce the initial volume of a given process liqueur and to eliminate impurities from the product solution. This theoretical investigation focuses on applications where the permeate flux is given by the Gel Polarization model. The goal of this paper is to use optimal control theory to determine optimal time-varying diluant addition that minimizes treatment time. We propose a diafiltration model in a dimensionless form with normalized model equations in order to determine general features of optimal diluant utilization strategy. Based on the model, we formulate the optimal control problem and apply the theory of optimal control exploiting the Pontryagin’s minimum principle. We confirm the analytical results by numerical computations using numerical methods of dynamic optimization. We prove that optimal control strategy is to perform a constant-volume diafiltration step at optimal macro-solute concentration that guarantees maximal removal of micro-solute at any time instant. This constant-volume diafiltration step is preceded and followed by optional ultrafiltration or pure dilution steps that force the concentrations at first to arrive to the optimal macro-solute concentration and at last to arrive to the desired final concentrations. Finally, we provide practical optimization diagrams that allow decision makers to determine the optimal diluant control of a given separation task.

Greg Foley - One of the best experts on this subject based on the ideXlab platform.

  • minimizing the process time for ultrafiltration diafiltration under Gel Polarization conditions
    Journal of Membrane Science, 2011
    Co-Authors: Radoslav Paulen, Miroslav Fikar, Greg Foley, Peter Czermak, Zoltan Kovacs
    Abstract:

    Abstract This study examines a generalized ultrafiltration/diafiltration process that is designed to reduce the initial volume of a given process liqueur and to eliminate impurities from the product solution. This theoretical investigation focuses on applications where the permeate flux is given by the Gel Polarization model. The goal of this paper is to use optimal control theory to determine optimal time-varying diluant addition that minimizes treatment time. We propose a diafiltration model in a dimensionless form with normalized model equations in order to determine general features of optimal diluant utilization strategy. Based on the model, we formulate the optimal control problem and apply the theory of optimal control exploiting the Pontryagin’s minimum principle. We confirm the analytical results by numerical computations using numerical methods of dynamic optimization. We prove that optimal control strategy is to perform a constant-volume diafiltration step at optimal macro-solute concentration that guarantees maximal removal of micro-solute at any time instant. This constant-volume diafiltration step is preceded and followed by optional ultrafiltration or pure dilution steps that force the concentrations at first to arrive to the optimal macro-solute concentration and at last to arrive to the desired final concentrations. Finally, we provide practical optimization diagrams that allow decision makers to determine the optimal diluant control of a given separation task.

Zoltan Kovacs - One of the best experts on this subject based on the ideXlab platform.

  • minimizing the process time for ultrafiltration diafiltration under Gel Polarization conditions
    Journal of Membrane Science, 2011
    Co-Authors: Radoslav Paulen, Miroslav Fikar, Greg Foley, Peter Czermak, Zoltan Kovacs
    Abstract:

    Abstract This study examines a generalized ultrafiltration/diafiltration process that is designed to reduce the initial volume of a given process liqueur and to eliminate impurities from the product solution. This theoretical investigation focuses on applications where the permeate flux is given by the Gel Polarization model. The goal of this paper is to use optimal control theory to determine optimal time-varying diluant addition that minimizes treatment time. We propose a diafiltration model in a dimensionless form with normalized model equations in order to determine general features of optimal diluant utilization strategy. Based on the model, we formulate the optimal control problem and apply the theory of optimal control exploiting the Pontryagin’s minimum principle. We confirm the analytical results by numerical computations using numerical methods of dynamic optimization. We prove that optimal control strategy is to perform a constant-volume diafiltration step at optimal macro-solute concentration that guarantees maximal removal of micro-solute at any time instant. This constant-volume diafiltration step is preceded and followed by optional ultrafiltration or pure dilution steps that force the concentrations at first to arrive to the optimal macro-solute concentration and at last to arrive to the desired final concentrations. Finally, we provide practical optimization diagrams that allow decision makers to determine the optimal diluant control of a given separation task.