GPER

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2976 Experts worldwide ranked by ideXlab platform

Eric R Prossnitz - One of the best experts on this subject based on the ideXlab platform.

  • twenty years of the g protein coupled estrogen receptor GPER historical and personal perspectives
    The Journal of Steroid Biochemistry and Molecular Biology, 2018
    Co-Authors: Matthias Barton, Edward J Filardo, Marcello Maggiolini, Peter Thomas, Stephen J Lolait, Eric R Prossnitz
    Abstract:

    Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.

  • G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis.
    Advances in experimental medicine and biology, 2017
    Co-Authors: Geetanjali Sharma, Eric R Prossnitz
    Abstract:

    Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.

  • Role of GPER in estrogen-dependent nitric oxide formation and vasodilation
    The Journal of steroid biochemistry and molecular biology, 2017
    Co-Authors: Natalie C. Fredette, Matthias R. Meyer, Eric R Prossnitz
    Abstract:

    Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and GPER-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. GPER deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease.

  • GPER modulators: Opportunity Nox on the heels of a class Akt
    The Journal of steroid biochemistry and molecular biology, 2017
    Co-Authors: Eric R Prossnitz
    Abstract:

    The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated.

  • Roles of G protein-coupled estrogen receptor GPER in metabolic regulation
    The Journal of steroid biochemistry and molecular biology, 2017
    Co-Authors: Geetanjali Sharma, Franck Mauvais-jarvis, Eric R Prossnitz
    Abstract:

    Abstract Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β‐estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed.

Ross D Feldman - One of the best experts on this subject based on the ideXlab platform.

  • Heart Disease in Women: Unappreciated Challenges, GPER as a New Target
    International journal of molecular sciences, 2016
    Co-Authors: Ross D Feldman
    Abstract:

    Heart disease in women remains underappreciated, underdiagnosed and undertreated. Further, although we are starting to understand some of the social and behavioral determinants for this, the biological basis for the increased rate of rise in atherosclerosis risk in women after menopause remains very poorly understand. In this review we will outline the scope of the clinical issues related to heart disease in women, the emerging findings regarding the biological basis underlying the increased prevalence of atherosclerotic risk factors in postmenopausal women (vs. men) and the role of the G protein-coupled estrogen receptor (GPER) and its genetic regulation as a determinant of these sex-specific risks. GPER is a recently appreciated GPCR that mediates the rapid effects of estrogen and aldosterone. Recent studies have identified that GPER activation regulates both blood pressure. We have shown that regulation of GPER function via expression of a hypofunctional GPER genetic variant is an important determinant of blood pressure and risk of hypertension in women. Further, our most recent studies have identified that GPER activation is an important regulator of low density lipoprotein (LDL) receptor metabolism and that expression of the hypofunctional GPER genetic variant is an important contributor to the development of hypercholesterolemia in women. GPER appears to be an important determinant of the two major risk factors for coronary artery disease-blood pressure and LDL cholesterol. Further, the importance of this mechanism appears to be greater in women. Thus, the appreciation of the role of GPER function as a determinant of the progression of atherosclerotic disease may be important both in our understanding of cardiometabolic function but also in opening the way to greater appreciation of the sex-specific regulation of atherosclerotic risk factors.

  • aldosterone mediates metastatic spread of renal cancer via the g protein coupled estrogen receptor GPER
    The FASEB Journal, 2016
    Co-Authors: Ross D Feldman, Yasin Hussain, Qingming Ding, Lee E. Limbird, Geoffrey J Pickering, Robert Gros
    Abstract:

    Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER).

  • Copernicus Revisited: Overturning Ptolemy's View of the GPER Universe
    Trends in endocrinology and metabolism: TEM, 2015
    Co-Authors: Ross D Feldman, Lee E. Limbird
    Abstract:

    Whether aldosterone activates the G-protein-coupled estrogen receptor (GPER) has been questioned, recently, in the name of Copernicus. However, for G-protein-coupled receptors (GPCRs) multiple hormone activators are common. Further, studies in mineralocorticoid receptor (MR)-deficient systems, with pharmacological GPER-selective antagonists or regulation of GPER expression, consistently show that some aldosterone effects can be GPER mediated.

  • GPER-independent effects of estrogen in rat aortic vascular endothelial cells
    Molecular and cellular endocrinology, 2014
    Co-Authors: Qingming Ding, Yasin Hussain, Robert Gros, Jozef Chorazyczewski, Ross D Feldman
    Abstract:

    Abstract GPER (aka GPR30) has been identified as an important mechanism by which estrogen mediates its effects. Previous studies from our laboratories and those of others have demonstrated that GPER activation mediates a range of vascular contractile and growth regulatory responses. However, the importance of GPER in mediating the actions of estradiol (E2) in rat aortic endothelial cells is unclear. Therefore, we sought to determine the importance of GPER vs. the “classical” estrogen receptor (ER) in mediating the endothelial growth regulatory effects of E2. To do this we assessed the effect of E2 in regulating phosphoERK content and apoptotic rates in rat aortic endothelial cells and the role of GPER in mediating these effects. E2 mediated a concentration-dependent inhibition of both ERK phosphorylation and serum deprivation-induced apoptosis with a maximal effect at a concentration of 10 nM. Pretreatment with the ER antagonist ICI 182780 abolished E2-mediated inhibition of both ERK phosphorylation and apoptosis. In contrast, pretreatment with GPER antagonist G15 had no significant effect on E2-mediated inhibition of ERK phosphorylation or on apoptosis. Further, downregulation of GPER expression with a GPER shRNA adenovirus did not block E2-mediated inhibitory effects on ERK phosphorylation and apoptosis. In fact, these inhibitory effects of E2 were further enhanced by GPER downregulation. Downregulation of ERα expression reversed the E2-mediated inhibitory effects to stimulatory effects. E2's phosphoERK and apoptosis stimulatory effects seen with ERα downregulation are attenuated by pretreatment with G15. In conclusion, in rat aortic endothelial cells, E2-mediated endothelial effects are predominantly driven by ER and not by GPER.

  • Abstract 43: The Hypofunctional GPER P16L Variant is Associated With a Gene Dosage-Related Increase in Plasma LDL Cholesterol
    Arteriosclerosis Thrombosis and Vascular Biology, 2014
    Co-Authors: Yasin Hussain, Ross D Feldman, Qingming Ding, Jozef Chorazyczewski, Matthew R. Ban, Adam D. Mcintyre, Rob Gros, Robert A. Hegele
    Abstract:

    Introduction: Estrogen deficiency is linked with dyslipidemia, especially in postmenopausal women, through a poorly understood mechanism. GPER is a recently recognized GPCR which is activated by estrogens. However, the role of GPER in mediating estrogen’s effects on lipid metabolism is unknown. We recently identified a common hypofunctional missense variant of GPER, namely P16L (allele frequency ~ 20%). We studied association of this with plasma LDL cholesterol levels. Further, we studied the role of GPER in regulating expression of the LDL receptor. Methods: Our discovery cohort was a genetically isolated population of Northern European descent (n=415), and our validation cohort consisted of 505 normal, healthy subjects 18-56 years of age from London, Ontario. Genomic DNA was extracted from whole blood and genotyped for GPER using a dedicated TaqMan assay. Additionally we examined the role of GPER on the regulation of LDL receptor expression by treatment with the GPER agonist, G1. Results: In the discovery cohort, the GPER P16L genetic variant was associated with a significant gene-dosage related increase in LDL cholesterol (CC [homozygous wild type] =3.18±0.84 (mean+SD); CT [heterozygote] =3.25±0.80; and TT [homozygous variant] =4.25±0.87 mmol/L, p

Marcello Maggiolini - One of the best experts on this subject based on the ideXlab platform.

  • Computational Approaches for the Discovery of GPER Targeting Compounds.
    Frontiers in endocrinology, 2020
    Co-Authors: Fedora Grande, Rosamaria Lappano, Marcello Maggiolini, Maria Antonietta Occhiuzzi, Francesca Cirillo, Rita Guzzi, Antonio Garofalo, Yves Jacquot, Bruno Rizzuti
    Abstract:

    Estrogens exert a panel of biological activities mainly through the estrogen receptors α and β, which belong to the nuclear receptor superfamily. Diverse studies have shown that the G protein-coupled estrogen receptor 1 (GPER, previously known as GPR30) also mediates the multifaceted effects of estrogens in numerous pathophysiological events, including neurodegenerative, immune, metabolic, and cardiovascular disorders and the progression of different types of cancer. In particular, GPER is implicated in hormone-sensitive tumors, albeit diverse issues remain to be deeply investigated. As such, this receptor may represent an appealing target for therapeutics in different diseases. The yet unavailable complete GPER crystallographic structure, and its relatively low sequence similarity with the other members of the G protein-coupled receptor (GPCR) family, hamper the possibility to discover compounds able to modulate GPER activity. Consequently, a reliable molecular model of this receptor is required for the design of suitable ligands. To date, convergent approaches involving structure-based drug design and virtual ligand screening have led to the identification of several GPER selective ligands, thus providing important information regarding its mode of action and function. In this survey, we summarize results obtained through computer-aided techniques devoted to the assessment of GPER ligands toward their usefulness in innovative treatments of different diseases.

  • twenty years of the g protein coupled estrogen receptor GPER historical and personal perspectives
    The Journal of Steroid Biochemistry and Molecular Biology, 2018
    Co-Authors: Matthias Barton, Edward J Filardo, Marcello Maggiolini, Peter Thomas, Stephen J Lolait, Eric R Prossnitz
    Abstract:

    Estrogens play a critical role in many aspects of physiology, particularly female reproductive function, but also in pathophysiology, and are associated with protection from numerous diseases in premenopausal women. Steroids and the effects of estrogen have been known for ∼90 years, with the first evidence for a receptor for estrogen presented ∼50 years ago. The original ancestral steroid receptor, extending back into evolution more than 500 million years, was likely an estrogen receptor, whereas G protein-coupled receptors (GPCRs) trace their origins back into history more than one billion years. The classical estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that confer estrogen sensitivity upon many genes. It was soon apparent that these, or novel receptors may also be responsible for the "rapid"/"non-genomic" membrane-associated effects of estrogen. The identification of an orphan GPCR (GPR30, published in 1996) opened a new field of research with the description in 2000 that GPR30 expression is required for rapid estrogen signaling. In 2005-2006, the field was greatly stimulated by two studies that described the binding of estrogen to GPR30-expressing cell membranes, followed by the identification of a GPR30-selective agonist (that lacked binding and activity towards ERα and ERβ). Renamed GPER (G protein-coupled estrogen receptor) by IUPHAR in 2007, the total number of articles in PubMed related to this receptor recently surpassed 1000. In this article, the authors present personal perspectives on how they became involved in the discovery and/or advancement of GPER research. These areas include non-genomic effects on vascular tone, receptor cloning, molecular and cellular biology, signal transduction mechanisms and pharmacology of GPER, highlighting the roles of GPER and GPER-selective compounds in diseases such as obesity, diabetes, and cancer and the obligatory role of GPER in propagating cardiovascular aging, arterial hypertension and heart failure through the stimulation of Nox expression.

  • GPER mediates the angiocrine actions induced by igf1 through the hif 1α vegf pathway in the breast tumor microenvironment
    Breast Cancer Research, 2017
    Co-Authors: Marcello Maggiolini, Ernestina Marianna De Francesco, Andrew H Sims, Federica Sotgia, Michael P Lisanti, Robert Clarke
    Abstract:

    The G protein estrogen receptor GPER/GPR30 mediates estrogen action in breast cancer cells as well as in breast cancer-associated fibroblasts (CAFs), which are key components of microenvironment driving tumor progression. GPER is a transcriptional target of hypoxia inducible factor 1 alpha (HIF-1α) and activates VEGF expression and angiogenesis in hypoxic breast tumor microenvironment. Furthermore, IGF1/IGF1R signaling, which has angiogenic effects, has been shown to activate GPER in breast cancer cells. We analyzed gene expression data from published studies representing almost 5000 breast cancer patients to investigate whether GPER and IGF1 signaling establish an angiocrine gene signature in breast cancer patients. Next, we used GPER-positive but estrogen receptor (ER)-negative primary CAF cells derived from patient breast tumours and SKBR3 breast cancer cells to investigate the role of GPER in the regulation of VEGF expression and angiogenesis triggered by IGF1. We performed gene expression and promoter studies, western blotting and immunofluorescence analysis, gene silencing strategies and endothelial tube formation assays to evaluate the involvement of the HIF-1α/GPER/VEGF signaling in the biological responses to IGF1. We first determined that GPER is co-expressed with IGF1R and with the vessel marker CD34 in human breast tumors (n = 4972). Next, we determined that IGF1/IGF1R signaling engages the ERK1/2 and AKT transduction pathways to induce the expression of HIF-1α and its targets GPER and VEGF. We found that a functional cooperation between HIF-1α and GPER is essential for the transcriptional activation of VEGF induced by IGF1. Finally, using conditioned medium from CAFs and SKBR3 cells stimulated with IGF1, we established that HIF-1α and GPER are both required for VEGF-induced human vascular endothelial cell tube formation. These findings shed new light on the essential role played by GPER in IGF1/IGF1R signaling that induces breast tumor angiogenesis. Targeting the multifaceted interactions between cancer cells and tumor microenvironment involving both GPCRs and growth factor receptors has potential in future combination anticancer therapies.

  • a genetic polymorphism repurposes the g protein coupled and membrane associated estrogen receptor GPER to a transcription factor like molecule promoting paracrine signaling between stroma and breast carcinoma cells
    Oncotarget, 2017
    Co-Authors: Marco Pupo, Marcello Maggiolini, Alexandre Bodmer, Melissa Berto, Pierreyves Dietrich, Didier Picard
    Abstract:

    // Marco Pupo 1,2,4 , Alexandre Bodmer 3 , Melissa Berto 1 , Marcello Maggiolini 2 , Pierre-Yves Dietrich 3 and Didier Picard 1 1 Departement de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Universite de Geneve, Sciences III, CH-1211 Geneve 4, Switzerland 2 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy 3 Departement d’Oncologie, Hopitaux Universitaires de Geneve, CH - 1211 Geneve 14, Switzerland 4 Current address: Areta International S.r.l., Gerenzano, Italy Correspondence to: Didier Picard, email: // Keywords : breast cancer, cancer-associated fibroblasts, tumor microenvironment, nuclear localization, single nucleotide polymorphism Received : March 06, 2017 Accepted : May 10, 2017 Published : May 24, 2017 Abstract GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.

  • GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor derived endothelial cells
    Oncotarget, 2016
    Co-Authors: Damiano Cosimo Rigiracciolo, Rosamaria Lappano, Assunta Pisano, Marcello Maggiolini, Maria Francesca Santolla, Andrea Scarpelli, Silvia Avino, Paola De Marco, Benedetta Bussolati, Ernestina Marianna De Francesco
    Abstract:

    // Damiano Cosimo Rigiracciolo 1 , Andrea Scarpelli 1 , Rosamaria Lappano 1 , Assunta Pisano 1 , Maria Francesca Santolla 1 , Silvia Avino 1 , Paola De Marco 1 , Benedetta Bussolati 2 , Marcello Maggiolini 1 and Ernestina Marianna De Francesco 1 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy 2 Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy Correspondence to: Marcello Maggiolini, email: // Rosamaria Lappano, email: // Keywords : GPER, aldosterone, mineralcorticoid receptor, breast cancer cells, breast tumor-derived endothelial cells, Pathology Section Received : September 01, 2015 Accepted : November 22, 2015 Published : December 05, 2015 Abstract Aldosterone induces relevant effects binding to the mineralcorticoid receptor (MR), which acts as a ligand-gated transcription factor. Alternate mechanisms can mediate the action of aldosterone such as the activation of epidermal growth factor receptor (EGFR), MAPK/ERK, transcription factors and ion channels. The G-protein estrogen receptor (GPER) has been involved in the stimulatory effects of estrogenic signalling in breast cancer. GPER has been also shown to contribute to certain responses to aldosterone, however the role played by GPER and the molecular mechanisms implicated remain to be fully understood. Here, we evaluated the involvement of GPER in the stimulatory action exerted by aldosterone in breast cancer cells and breast tumor derived endothelial cells (B-TEC). Competition assays, gene expression and silencing studies, immunoblotting and immunofluorescence experiments, cell proliferation and migration were performed in order to provide novel insights into the role of GPER in the aldosterone-activated signalling. Our results demonstrate that aldosterone triggers the EGFR/ERK transduction pathway in a MR- and GPER-dependent manner. Aldosterone does not bind to GPER, it however induces the direct interaction between MR and GPER as well as between GPER and EGFR. Next, we ascertain that the up-regulation of the Na + /H + exchanger-1 (NHE-1) induced by aldosterone involves MR and GPER. Biologically, both MR and GPER contribute to the proliferation and migration of breast and endothelial cancer cells mediated by NHE-1 upon aldosterone exposure. Our data further extend the current knowledge on the molecular mechanisms through which GPER may contribute to the stimulatory action elicited by aldosterone in breast cancer.

Atanas Ignatov - One of the best experts on this subject based on the ideXlab platform.

  • G protein-coupled estrogen receptor 1 (GPER-1) and agonist G-1 inhibit growth of ovarian cancer cells by activation of anti-tumoral transcriptome responses: impact of GPER-1 mRNA on survival
    Journal of Cancer Research and Clinical Oncology, 2020
    Co-Authors: Susanne Schüler-toprak, Tanja Ignatov, Atanas Ignatov, Olaf Ortmann, Maciej Skrzypczak, Oliver Treeck
    Abstract:

    Purpose The present study intended to further elucidate the role of G protein-coupled estrogen receptor 1 (GPER-1) in ovarian cancer by comparing the effects of a GPER-1 knockdown and treatment with its agonist G-1 on cell growth, apoptosis, and the transcriptome of two ovarian cancer cell lines. Furthermore, the role of GPER-1 in ovarian cancer survival was examined. Methods GPER-1 expression in OVCAR-3 and OAW-42 ovarian cancer cells was knocked down by RNAi. The effects on cell growth were measured by means of the fluorimetric cell titer blue assay and on the transcriptome by Affymetrix GeneChip analysis. The effect of GPER-1 on patient’s survival was examined using open source mRNA and clinical data of 1657 ovarian cancer patients. Results GPER-1 knockdown resulted in a significant growth stimulation of both cell lines, whereas treatment with agonist G-1 decreased growth of both cell lines in a dose-dependent manner. Transcriptome analyses revealed a set of 18 genes being conversely regulated after GPER-1 knockdown and G-1 treatment. Generally, treatment with G-1 led to a transcriptome response associated with growth inhibition. In contrast, knockdown of GPER-1 exerted opposite effects, stimulating pathways activating mitosis, but inhibiting pathways associated with apoptosis or interferon signaling. Further analyses using open-access mRNA and clinical data by bioinformatical online tools revealed a longer OS (HR = 0.86, p  = 0.057) and PFS (HR = 0.81, p  = 0.0035) of ovarian cancer patients with high GPER-1 mRNA expression. Conclusions The results of this study clearly support the hypothesis that GPER-1 acts as a tumor suppressor in ovarian cancer.

  • GPER-1 expression is associated with a decreased response rate to primary tamoxifen therapy of breast cancer patients.
    Archives of gynecology and obstetrics, 2020
    Co-Authors: Tanja Ignatov, Thomas Kalinski, Oliver Treeck, Olaf Ortmann, Atanas Ignatov
    Abstract:

    Endocrine therapies using tamoxifen and/or aromatase inhibitors are important therapeutic options for the targeted treatment of hormone-responsive breast cancer. In addition to nuclear estrogen receptors ERα and β, G-protein-coupled estrogen receptor GPER-1 is a third receptor-mediating estrogen effects in breast cancer cells. The aim of this study was to examine to what extent GPER-1 expression might affect the efficacy of primary endocrine treatment of breast cancer. GPER-1 expression was determined in tissue samples from patients with early breast cancer by means of immunohistochemistry and a GPER-1 score of ≥ 3 was considered to be positive. In a total of 165 patients, the response to a primary therapy with tamoxifen (TAM) or aromatase inhibitors (AI) was assessed by ultrasound imaging for up to 6 months. The primary endpoint of this study was the response to treatment evaluated by RECIST 1.1 criteria. GPER-1 expression was observed in 127 (77.0%) out of 165 cases. Based on GPER-1 expression and the type of endocrine treatment, the patients were divided into 4 groups: GPER-1 negative/TAM (12.1%), GPER-1 negative/AI (10.9%), GPER-1 positive/TAM (44.8%), and GPER-1 positive/AI (32.1%). The groups were well balanced regarding different clinical and pathological factors. After 4 and 6 months of treatment, a high level of stable disease or progressive disease was observed in the GPER-1 positive/TAM group only (p 

  • GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.
    Cancer investigation, 2017
    Co-Authors: Christine Weissenborn, Tanja Ignatov, Norbert Nass, Thomas Kalinski, Serban-dan Costa, Ana Claudia Zenclussen, Atanas Ignatov
    Abstract:

    Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.

  • GPER functions as a tumor suppressor in triple-negative breast cancer cells
    Journal of Cancer Research and Clinical Oncology, 2014
    Co-Authors: Christine Weissenborn, Tanja Ignatov, Serban-dan Costa, Ana Claudia Zenclussen, Hans-joachim Ochel, Zoya Ignatova, Atanas Ignatov
    Abstract:

    Background The orphan, membrane-bound estrogen receptor (GPER) is expressed at high levels in a large fraction of breast cancer patients and its expression is favorable for patients’ survival. Methods We investigated the role of GPER as a potential tumor suppressor in triple-negative breast cancer cells MDA-MB-231 and MDA-MB-468 using cell cycle analysis and apoptosis assay. The constitutive activity of GPER was investigated. Results GPER-specific activation with G-1 agonist inhibited breast cancer cell growth in concentration-dependent manner via induction of the cell cycle arrest in G2/M phase, enhanced phosphorylation of histone H3 and caspase-3-mediated apoptosis. Analysis of the methylation status of the GPER promoter in the triple-negative breast cancer cells and in tissues derived from breast cancer patients revealed that GPER amount is regulated by epigenetic mechanisms and GPER expression is inactivated by promoter methylation. Furthermore, GPER expression was induced by stress factors, such as radiation, and GPER amount inversely correlated with the p53 expression level. Conclusions Overall, our results establish the protective role in breast cancer tumorigenesis, and the cell surface expression of GPER makes it an excellent potential therapeutic target for triple-negative breast cancer.

  • GPER-1 acts as a tumor suppressor in ovarian cancer
    Journal of ovarian research, 2013
    Co-Authors: Tanja Ignatov, Christine Weissenborn, Thomas Kalinski, Serban-dan Costa, Ana Claudia Zenclussen, Saskia Modl, Maike Thulig, Oliver Treeck, Olaf Ortmann, Atanas Ignatov
    Abstract:

    Background: It is known that the new membrane-bound estrogen receptor GPER-1 acts suppressive in breast cancer cells and its expression decreases during disease progression. This study was conducted to evaluate the GPER-1 expression in ovarian cancer and its correlation with progression. Its function was tested in vitro in ovarian cancer cells. Patients and methods: GPER-1 expression was analyzed by immunohistochemistry in 35 benign ovarian tumors, 35 tumors of low-malignant potential and in 124 ovarian cancers. GPER-1 expression was correlated to the prospectively evaluated disease-free survival of ovarian cancer patients. We also tested GPER-1 expression in ovarian cancer cells and the effect of GPER-1 stimulation on cell growth. Results: GPER-1 expression was significantly lower in ovarian cancer tissue than in benign and low-malignant ovarian tumors. GPER-1 expression was observed in 83.1% of malignant tumors and was higher in early stage cancers and tumors with high histological differentiation. GPER-1 expression was associated with favourable clinical outcome. The difference in 2-year disease-free survival by GPER-1 expression was significant, 28.6% for GPER-1 negative and 59.2% for GPER-1 positive cases (p = 0.002). GPER-1 expression was observed in SKOV-3 and OVCAR-3 ovarian cancer cell lines. G-1, a selective GPER-1 agonist, suppressed proliferation of the two cell types via inhibition of cell cycle progression in G2/M phase and stimulation of caspase-dependent apoptosis. The blockade in G2/M phase was associated with increased expression of cyclin B1 and Cdc2 and phosphorylation of histone 3. Conclusion: GPER-1 emerges as a new tumor suppressor with unsuspected therapeutic potential for ovarian cancer.

Robert Gros - One of the best experts on this subject based on the ideXlab platform.

  • aldosterone mediates metastatic spread of renal cancer via the g protein coupled estrogen receptor GPER
    The FASEB Journal, 2016
    Co-Authors: Ross D Feldman, Yasin Hussain, Qingming Ding, Lee E. Limbird, Geoffrey J Pickering, Robert Gros
    Abstract:

    Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER).

  • GPER-independent effects of estrogen in rat aortic vascular endothelial cells
    Molecular and cellular endocrinology, 2014
    Co-Authors: Qingming Ding, Yasin Hussain, Robert Gros, Jozef Chorazyczewski, Ross D Feldman
    Abstract:

    Abstract GPER (aka GPR30) has been identified as an important mechanism by which estrogen mediates its effects. Previous studies from our laboratories and those of others have demonstrated that GPER activation mediates a range of vascular contractile and growth regulatory responses. However, the importance of GPER in mediating the actions of estradiol (E2) in rat aortic endothelial cells is unclear. Therefore, we sought to determine the importance of GPER vs. the “classical” estrogen receptor (ER) in mediating the endothelial growth regulatory effects of E2. To do this we assessed the effect of E2 in regulating phosphoERK content and apoptotic rates in rat aortic endothelial cells and the role of GPER in mediating these effects. E2 mediated a concentration-dependent inhibition of both ERK phosphorylation and serum deprivation-induced apoptosis with a maximal effect at a concentration of 10 nM. Pretreatment with the ER antagonist ICI 182780 abolished E2-mediated inhibition of both ERK phosphorylation and apoptosis. In contrast, pretreatment with GPER antagonist G15 had no significant effect on E2-mediated inhibition of ERK phosphorylation or on apoptosis. Further, downregulation of GPER expression with a GPER shRNA adenovirus did not block E2-mediated inhibitory effects on ERK phosphorylation and apoptosis. In fact, these inhibitory effects of E2 were further enhanced by GPER downregulation. Downregulation of ERα expression reversed the E2-mediated inhibitory effects to stimulatory effects. E2's phosphoERK and apoptosis stimulatory effects seen with ERα downregulation are attenuated by pretreatment with G15. In conclusion, in rat aortic endothelial cells, E2-mediated endothelial effects are predominantly driven by ER and not by GPER.

  • vascular effects of aldosterone sorting out the receptors and the ligands
    Clinical and Experimental Pharmacology and Physiology, 2013
    Co-Authors: Ross D Feldman, Robert Gros
    Abstract:

    Summary Aldosterone has actions far beyond its role as a renal regulator of sodium reabsorption, and broader mechanisms of action than simply a transcriptional regulator. Aldosterone has a number of vascular effects, including regulation of vascular reactivity and vascular growth and/or development. Aldosterone-mediated effects on vascular reactivity reflect a balance between its endothelial-dependent vasodilator effects and its direct smooth muscle vasoconstrictor effects. The endothelial vasodilator effects of aldosterone are mediated by phosphatidylinositol 3-kinase-dependent activation of nitric oxide synthase. G-Protein oestrogen receptor (GPER) is a recently recognized G-protein coupled receptor (GPCR) that is activated by steroid hormones. It was first recognized as the GPCR mediating the rapid effects of oestrogens. Activation of GPER also mediates at least some of the vascular effects of aldosterone in smooth muscle and endothelial cells. In vascular endothelial cells, aldosterone activation of GPER mediates vasodilation. In contrast, activation of endothelial mineralocorticoid receptors has been linked to enhanced vasoconstrictor and/or impaired vasodilator responses.

  • Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation
    American journal of physiology. Cell physiology, 2013
    Co-Authors: Robert Gros, Qingming Ding, Jozef Chorazyczewski, Bonan Liu, Ross D Feldman
    Abstract:

    The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells. We showed that these effects could occur via activation of the classic mineralocorticoid receptor, as well the recently characterized G protein-coupled estrogen receptor (GPER), initially characterized as an estrogen-specific receptor. However, the mechanisms underlying aldosterone's endothelium-dependent actions are unknown. Furthermore, the ERK regulatory and proapoptotic effects of aldosterone mediated by GPER activation in cultured vascular smooth muscle cells were only apparent when GPER was reintroduced into these cells by gene transfer. Whether GPER activation via aldosterone might be an important regulator in native vascular cells has been questioned. Therefore, to determine the role of GPER in mediating aldosterone's effects on cell growth and vascular reactivity in native cells, we examined rat aortic vascular endothelial cells, a model characterized by persistent robust expression of GPER, but without detectable mineralocorticoid receptor expression. In these endothelial cells, the GPER agonist G1 mediates a rapid increase in ERK phosphorylation that is wholly GPER-dependent, paralleling the actions of aldosterone. The effects of G1 and aldosterone to stimulate ERK phosphorylation paralleled their proapoptotic and antiproliferative effects. In previous studies, we reported that aldosterone mediates a rapid endothelium-dependent vasodilatory effect, antagonistic to its direct vasoconstrictor effect in endothelium-denuded preparations. Using a rat aortic ring/organ bath preparation to determine the GPER dependence of aldosterone's endothelium-dependent vasodilator effects, we demonstrate that aldosterone inhibits phenylephrine-mediated contraction. This vasodilator effect parallels the actions of the GPER agonist G1. Furthermore, the effects of aldosterone were completely ablated by the GPER antagonist G15. These data support an important role of GPER activation in aldosterone-mediated regulation of endothelial cell growth, as well as in aldosterone's endothelium-mediated regulation of vasoreactivity.