Gravel Pack

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 6147 Experts worldwide ranked by ideXlab platform

J. Carlos Santamarina - One of the best experts on this subject based on the ideXlab platform.

  • Sediment–well interaction during depressurization
    Acta Geotechnica, 2017
    Co-Authors: Hosung Shin, J. Carlos Santamarina
    Abstract:

    Depressurization gives rise to complex sediment–well interactions that may cause the failure of wells. The situation is aggravated when high depressurization is imposed on sediments subjected to an initially low effective stress, such as in gas production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function to capture compressibility from low to high effective stress, and recognizes the dependency of hydraulic conductivity on void ratio. Results highlight the critical effect of hydro-mechanical coupling as compared to constant permeability models: A compact sediment shell develops against the screen, the depressurization zone is significantly smaller than the volume anticipated assuming constant permeability, settlement decreases, and the axial load on the well decreases; in the case of hydrates, gas production will be a small fraction of the mass estimated using a constant permeability model. High compressive axial forces develop in the casing within the production horizon, and the peak force can exceed the yield capacity of the casing and cause its collapse. Also tensile axial forces may develop in the casing above the production horizon as the sediment compacts in the depressurized zone and pulls down from the well. Well engineering should consider: slip joints to accommodate extensional displacement above the production zone, soft telescopic/sliding screen design to minimize the buildup of compressive axial force within the production horizon, and enlarged Gravel Pack to extend the size of the depressurized zone.

Hosung Shin - One of the best experts on this subject based on the ideXlab platform.

  • Sediment–well interaction during depressurization
    Acta Geotechnica, 2017
    Co-Authors: Hosung Shin, J. Carlos Santamarina
    Abstract:

    Depressurization gives rise to complex sediment–well interactions that may cause the failure of wells. The situation is aggravated when high depressurization is imposed on sediments subjected to an initially low effective stress, such as in gas production from hydrate accumulations in marine sediments. Sediment–well interaction is examined using a nonlinear finite element simulator. The hydro-mechanically coupled model represents the sediment as a Cam-Clay material, uses a continuous function to capture compressibility from low to high effective stress, and recognizes the dependency of hydraulic conductivity on void ratio. Results highlight the critical effect of hydro-mechanical coupling as compared to constant permeability models: A compact sediment shell develops against the screen, the depressurization zone is significantly smaller than the volume anticipated assuming constant permeability, settlement decreases, and the axial load on the well decreases; in the case of hydrates, gas production will be a small fraction of the mass estimated using a constant permeability model. High compressive axial forces develop in the casing within the production horizon, and the peak force can exceed the yield capacity of the casing and cause its collapse. Also tensile axial forces may develop in the casing above the production horizon as the sediment compacts in the depressurized zone and pulls down from the well. Well engineering should consider: slip joints to accommodate extensional displacement above the production zone, soft telescopic/sliding screen design to minimize the buildup of compressive axial force within the production horizon, and enlarged Gravel Pack to extend the size of the depressurized zone.

Abidi Sahrul - One of the best experts on this subject based on the ideXlab platform.

  • Design of High Rate Blender Hydraulic Power Pack Unit on Stimulation Vessel – Study Case Stim Star Borneo for Offshore Operations at Delta Mahakam area – East Borneo
    Institut Teknologi Sepuluh Nopember, 2017
    Co-Authors: Prastowo Hari, Fitri, Sutopo Purwono, Gurning, Raja Oloa Sau, Abidi Sahrul
    Abstract:

    Application of Hydraulic Power technology in world industry today is still continue to increased. Not only in Industrial it’s self, but in  Marine, Onshore and Offshore also use these technologies. Requirement of service in well services - Offshore Delta Mahakam region makes PT. Halliburton Indonesia as a Service Company increase his fleet service. The Type Stimulation Vessel Fleets - Stim Star Borneo is planned to improve the service unit of High Rate Water Pack (HRWP) with High Pressure Pump unit plus Gravel Pack Sand (GP) and High Rate Blender Unit. Blender High Rate is a unit tubular mixing blender driven by hydraulic power, motors blender, sand screw, pump suction and discharge pump that’s is installed unity. For that The authors will plan  system, calculation and specifications of Hydraulic Power Pack Unit for High Rate the Blender. Calculations start from of Operasional Requirement Conditions, and continued with Design Block Diagram, P & ID, and also calculations of systems such as Head, RPM, Pipe Diamater, Pipe Thickness, Main Hydraulic Pump, Reservoir Tank and Cooler. Where The Requirement of Hydraulic Main Pump Power is 950 kW with Electric Motor as prime mover 950 kW. The final result of the design is show as Layout and Detail drawing in attachment

  • Desain High Rate Blender Hydraulic Power Pack Unit Pada Stimulation Vessel – Stim Star Borneo Untuk Offshore Operations Blok Delta Mahakam – Kaltim
    2017
    Co-Authors: Abidi Sahrul
    Abstract:

    Penggunaan teknologi Hydraulic Power Pack Unit dalam dunia Industri sekarang ini terus meningkat. Tidak hanya di Industri saja, Marine, Onshore dan Offshore juga menggunakan teknologi tersebut. Meningkatnya kebutuhan pelayanan well service – offshore di daerah Delta Mahakam membuat PT. Halliburton Indonesia sebagai Service Company meningkatkan service armadanya. Armada Kapal Type Stimulation Vessel – Stim Star Borneo direncanakan meningkatkan service unit dari High Rate Water Pack (HRWP) dengan High Pressure Pump unit ditambah Gravel Pack Sand (GP) dengan High Rate Blender Unit. High Rate Blender ini adalah unit mixing blender yang digerakkan dengan hydraulic power, baik motor pemutar, sand screw, suction pump dan discharge pump yang ter - install satu unit tersebut. Untuk itu direncanakan system dan perhitungan spesifikasi Hydraulic Power Pack Unit untuk High Rate Blender tersebut. Perhitungan dimulai dari Kebutuhan Operasional, kemudian Desain Blok Diagram, P&ID, kemudian perhitungan – perhitungan system seperti Head, RPM, Diameter Pipa, Tebal Pipa, Hydraulic Main Pump, Reservoir Tank dan Cooler. Dimana Kebutuhan Hydraulic Main Pump adalah 950 kW dengan Electric Motor 950 kW sebagai prime mover. Hasil akhir desain dan spesifikasi ditampilkan berupa Layout dan Detail dalam format drawing pada lampiran. ================================================================================================== Application of Hydraulic Power technology in world industry today is still continue to increased. Not only in Industrial it’s self, but in Marine, Onshore and Offshore also use these technologies. Requirement of service in well services - Offshore Delta Mahakam region makes PT. Halliburton Indonesia as a Service Company increase his fleet service. The Type Stimulation Vessel Fleets - Stim Star Borneo is planned to improve the service unit of High Rate Water Pack (HRWP) with High Pressure Pump unit plus Gravel Pack Sand (GP) and High Rate Blender Unit. Blender High Rate is a unit tubular mixing blender driven by hydraulic power, motors blender, sand screw, pump suction and discharge pump that’s is installed unity. For that The authors will plan system, calculation and specifications of Hydraulic Power Pack Unit for High Rate the Blender. Calculations start from of Operasional Requirement Conditions, and continued with Design Block Diagram, P & ID, and also calculations of systems such as Head, RPM, Pipe Diamater, Pipe Thickness, Main Hydraulic Pump, Reservoir Tank and Cooler. Where The Requirement of Hydraulic Main Pump Power is 950 kW with Electric Motor as prime mover 950 kW. The final result of the design is show as Layout and Detail drawing in attachment

Thomas Harte - One of the best experts on this subject based on the ideXlab platform.

  • domestic well capture zone and influence of the Gravel Pack length
    Ground Water, 2009
    Co-Authors: Thomas Harte
    Abstract:

    Domestic wells in North America and elsewhere are typically constructed at relatively shallow depths and with the sand or Gravel Pack extending far above the intake screen of the well (shallow well seal). The source areas of these domestic wells and the effect of an extended Gravel Pack on the source area are typically unknown, and few resources exist for estimating these. In this article, we use detailed, high-resolution ground water modeling to estimate the capture zone (source area) of a typical domestic well located in an alluvial aquifer. Results for a wide range of aquifer and Gravel Pack hydraulic conductivities are compared to a simple analytical model. Correction factors for the analytical model are computed based on statistical regression of the numerical results against the analytical model. This tool can be applied to estimate the source area of a domestic well for a wide range of conditions. We show that an extended Gravel Pack above the well screen may contribute significantly to the overall inflow to a domestic well, especially in less permeable aquifers, where that contribution may range from 20% to 50% and that an extended Gravel Pack may lead to a significantly elongated capture zone, in some instances, nearly doubling the length of the capture zone. Extending the Gravel Pack much above the intake screen therefore significantly increases the vulnerability of the water source.

Putranto, Thomas Triadi - One of the best experts on this subject based on the ideXlab platform.

  • Perencanaan Pembangunan Sumur Dalam dengan Menggunakan Metode Geolistrik di Kelurahan Mangunharjo, Kecamatan Tembalang, Kota Semarang
    2017
    Co-Authors: Dewana, Brilliananta Radi, Suprapto, Dwiyanto Joko, Putranto, Thomas Triadi
    Abstract:

    Sejalan dengan semakin tinggi tingkat pertumbuhan penduduk di Kota Semarang, maka akan mengakibatkan semakin bertambahnya kawasan perumahan dengan lahan yang sudah tidak banyak lagi. Karena banyaknya jumlah penduduk ini, kebutuhan akan air bersih akan semakin meningkat. Dalam hal ini, PDAM sebagai penyedia dan pengelola air bersih belum dapat secara maksimal mendistribusikannya ke seluruh wilayah, salah satunya adalah di Kelurahan Mangunharjo, Kecamatan Tembalang, Kota Semarang.Maka dari itu, diperlukan perencanaan pembuatan sumur dalam pada daerah ini karena kebutuhan air masyarakat sekitar untuk keperluan sehari-hari tidak dapat terpenuhi. Dalam perencanaan sumur dalam ini, perlu dilakukan penyelidikan geolistrik untuk mengetahui lapisan bawah permukaannya sehingga nanti akan dapat digunakan dalam pembuatan desain konstruksi sumur dalam beserta rencana anggaran biaya yang diperlukan. Dalam penyelidikan dengan menggunakan metode geolistrik diketahui bahwa jenis litologi lapisan akuifer ini adalah batupasir tufan yang terletak pada kedalaman 31,1 meter sampai 37,1 meter, dengan kedalaman total desain konstruksi sumur dalam ini sebesar 40 m. Desain konstruksi sumur dalam yang pertama rinciannya yaitu berupa pipa casing galvanis sepanjang 40 meter, pipa hisap sepanjang 25,5 meter, pompa submersible diletakkan pada kedalaman 26 meter, screen yang diletakkan secara menerus dari kedalaman 31 – 34 meter dan 34 – 37 meter, serta Gravel Pack pada sumur ini diletakkan mulai pada kedalaman 30 meter dan menerus sampai ke bawah sampai pada kedalaman 40 meter. Selain itu, grouting dilakukan pada bagian paling atas lapisan batuan sampai pada kedalaman 30 meter. Lalu, desain sumur dalam yang kedua memiliki kedalaman total sumur sebesar 40 m dengan panjang pipa casing 40 m dan pipa hisap sepanjang 25,5 m. Pompa submersiblenya diletakkan pada kedalaman 26 m tanpa dilakukan grouting dan pemberian Gravel Pack pada sumur tersebut. Lalu total anggaran biaya yang diperlukan dalam pembuatan sumur dalam yang pertama ini adalah sebesar Rp. 266.680.000,00 (Dua Ratus Enam Puluh Enam Juta Enam Ratus Delapan Puluh Ribu Rupiah) dan desain sumur dalam yang kedua memiliki total biaya sebesar Rp. Rp. 168.099.000,00 (Seratus Enam Puluh Delapan Juta Sembilan Puluh Sembilan Ribu Rupiah) yang didapat dari rencana anggaran biaya yang telah dibuat. Kata kunci: air bersih, sumur dalam, akuifer, desain konstruksi sumur, rencana anggaran biaya

  • Perencanaan Sumur Dalam di Kelurahan Padangsari, Kecamatan Banyumanik, Kota Semarang
    2016
    Co-Authors: Abdila, Cecilia Monika Putri, Suprapto, Dwiyanto Joko, Putranto, Thomas Triadi
    Abstract:

    Seiring dengan meningkatnya kebutuhan air bersih di Kecamatan Banyumanik, terutama di Kelurahan Padangsari, maka diperlukan prasarana untuk menunjang pemenuhan air bersih yang layak dikonsumsi bagi masyarakat sekitar. Penerapan pembangunan sumur dalam dapat menjadikan alternatif yang baik apabila memiliki perencanaan konstruksi yang tepat, dikarenakan sumur dalam memiliki potensi airtanah dari lapisan akuifer yang lebih prospektif daripada sumur dangkal. Akan tetapi, potensi tersebut tetap ditentukan pada kondisi hidrogeologi di masing-masing daerah. Tujuan penelitian ini adalah mengetahui nilai tahanan jenis batuan di daerah penelitian, merencanakan konstruksi sumur dalam meliputi desain gambar dan perhitungan RAB, serta membandingkan penilaian perlengkapan peralatan konstruksi dari 2 Rencana Sumur berdasarkan aspek kekuatan, kelemahan, peluang/keuntungan dan ancaman/kegagalan yang mungkin terjadi. Salah satu metode yang dilakukan untuk pendugaan airtanah dan ketebalan lapisan akuifer yakni menggunakan penyelidikan Geolistrik tahanan jenis konfigurasi Schlumberger, kemudian pencocokan hasil data/curve matching, serta inversi menggunakan software Progress 3.0. Pembuatan desain gambar menggunakan software AutoCAD. Berdasarkan penyelidikan Geolistrik, lapisan akuifer di lokasi sumur dalam RW 16 Kelurahan Padangsari memiliki nilai resistivitas 12,3 ohm-meter, kedalaman 19,9-43,8 m dan diinterpretasikan merupakan litologi batupasir lempungan. Desain gambar konstruksi yang direncanakan pada Rencana Sumur 1 dilakukan perbesaran lubang bor/reaming dari 4 inch ke 8 inch, komponen utama pipa menggunakan bahan besi Galvanis medium A, pipa saringan/screen jenis low carbon steel, terdapat pekerjaan pengisian Gravel Pack dan grouting, sedangkan pada Rencana Sumur 2 tidak dilakukan reaming, komponen utama pipa menggunakan pipa PVC AW, tidak melakukan pekerjaan pengisian Gravel Pack maupun grouting. Perhitungan RAB pada Rencana Sumur 1 memiliki total biaya Rp. 167.189.000 dan Rencana Sumur 2 yakni Rp. 140.376.000. Katakunci : sumur dalam, perencanaan konstruksi, RAB, Kelurahan Padangsar