Gryllus

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 3816 Experts worldwide ranked by ideXlab platform

Sumihare Noji - One of the best experts on this subject based on the ideXlab platform.

  • leg regeneration is epigenetically regulated by histone h3k27 methylation in the cricket Gryllus bimaculatus
    Development, 2015
    Co-Authors: Yoshimasa Hamada, Taro Mito, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Tetsuya Bando, Kenji Tomioka, Hideyo Ohuchi
    Abstract:

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.

  • analysis of rna seq data reveals involvement of jak stat signalling during leg regeneration in the cricket Gryllus bimaculatus
    Development, 2013
    Co-Authors: Tetsuya Bando, Hideyo Ohuchi, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Yoshimasa Hamada, Takuro Kida, Yuji Matsuoka, Taro Mito
    Abstract:

    In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.

  • loss of function analyses of the fragile x related and dopamine receptor genes by rna interference in the cricket Gryllus bimaculatus
    Developmental Dynamics, 2009
    Co-Authors: Aska Hamada, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Kenji Tomioka, Eri Hondasumi, Sumihare Noji
    Abstract:

    In order to explore a possibility that the cricket Gryllus bimaculatus would be a useful model to unveil molecular mechanisms of human diseases, we performed loss-of-function analyses of Gryllus genes homologous to human genes that are responsible for human disorders, fragile X mental retardation 1 (fmr1) and Dopamine receptor (DopR). We cloned cDNAs of their Gryllus homologues, Gb'fmr1, Gb'DopRI, and Gb'DopRII, and analyzed their functions with use of nymphal RNA interference (RNAi). For Gb'fmr1, three major phenotypes were observed: (1) abnormal wing postures, (2) abnormal calling song, and (3) loss of the circadian locomotor rhythm, while for Gb'DopRI, defects of wing posture and morphology were found. These results indicate that the cricket has the potential to become a novel model system to explore human neuronal pathogenic mechanisms and to screen therapeutic drugs by RNAi.

  • egfr signaling is required for re establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph
    Developmental Biology, 2008
    Co-Authors: Taro Nakamura, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Sumihare Noji
    Abstract:

    Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.

  • divergent and conserved roles of extradenticle in body segmentation and appendage formation respectively in the cricket Gryllus bimaculatus
    Developmental Biology, 2008
    Co-Authors: Taro Mito, Hideyo Ohuchi, Taro Nakamura, Tomohiro Uda, Monica Ronco, Sumihare Noji
    Abstract:

    The cricket Gryllus bimaculatus is a typical hemimetabolous intermediate germ insect, in which the processes of segmentation and appendage formation differ from those in Drosophila, a holometabolous long germ insect. In order to compare their developmental mechanisms, we have focused on Gryllus orthologs of the Drosophila developmental regulatory genes and studied their functions. Here, we report a functional analysis of the Gryllus ortholog of extradenticle (Gb'exd) using embryonic and parental RNA interference (RNAi) techniques. We found the following: (1) RNAi suppression of Gb'exd results in the deletion or fusion of body segments. Especially the head was often very severely affected. This gap-like phenotype may be related to reduced expression of the gap genes hunchback and Kruppel in early RNAi germbands. (2) In the appendages, several segments (podomeres) were fused. (3) Head appendages including the antenna were transformed to a leg-like structure consisting of at least one proximal podomere as well as several tarsomeres. The defects in appendages are reminiscent of the phenotype caused by large exd clones in Drosophila antennal discs. These findings led us to the conclusion that (1) Gb'exd is required for segment patterning in the gnathal to abdominal region, acting in a gap gene-like manner in the anterior region. (2) Gb'exd plays important roles in formation of the appendages and the determination of their identities, acting as a regulatory switch that chooses between the fates of head appendages versus the appendage ground state. Although functions of Gb'exd in appendage patterning appear fundamentally conserved between Gryllus and Drosophila, its role in body segmentation may differ from that of Drosophila exd.

Taro Mito - One of the best experts on this subject based on the ideXlab platform.

  • cross allergenicity of crustacean and the edible insect Gryllus bimaculatus in patients with shrimp allergy
    Molecular Immunology, 2019
    Co-Authors: Norio Kamemura, Mayumi Sugimoto, Norimasa Tamehiro, Reiko Adachi, Sayuri Tomonari, Takahito Watanabe, Taro Mito
    Abstract:

    Abstract Food scarcity is a serious problem for many developing as well as developed countries. Edible insects have attracted attention recently as a novel food source. Crickets are especially high in nutritional value and easy to breed and harvest. In this study, we evaluated the risk of allergic reactions associated with cricket consumption in individuals with crustacean allergy. We evaluated food allergy risk in the consumption of Gryllus bimaculatus (cricket) in patients with shrimp allergy, using enzyme-linked immunosorbent assay (ELISA) and IgE crosslinking-induced luciferase expression assay (EXiLE). Sera from individuals with shrimp allergy (positive for shrimp-specific IgE by ImmunoCAP (>0.35 UA/mL; n = 9) or without shrimp allergy (negative for shrimp-specific IgE; n = 6) were obtained. There was a strong correlation between shrimp- and Gryllus-specific IgE levels obtained by ELISA (rs = 0.99; P  Our data suggest that the cricket allergen has the potential to induce an allergic reaction in individuals with crustacean allergy. Therefore, allergy risk and shrimp-specific IgE levels should be considered before consumption of cricket meal.

  • leg regeneration is epigenetically regulated by histone h3k27 methylation in the cricket Gryllus bimaculatus
    Development, 2015
    Co-Authors: Yoshimasa Hamada, Taro Mito, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Tetsuya Bando, Kenji Tomioka, Hideyo Ohuchi
    Abstract:

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.

  • analysis of rna seq data reveals involvement of jak stat signalling during leg regeneration in the cricket Gryllus bimaculatus
    Development, 2013
    Co-Authors: Tetsuya Bando, Hideyo Ohuchi, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Yoshimasa Hamada, Takuro Kida, Yuji Matsuoka, Taro Mito
    Abstract:

    In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.

  • loss of function analyses of the fragile x related and dopamine receptor genes by rna interference in the cricket Gryllus bimaculatus
    Developmental Dynamics, 2009
    Co-Authors: Aska Hamada, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Kenji Tomioka, Eri Hondasumi, Sumihare Noji
    Abstract:

    In order to explore a possibility that the cricket Gryllus bimaculatus would be a useful model to unveil molecular mechanisms of human diseases, we performed loss-of-function analyses of Gryllus genes homologous to human genes that are responsible for human disorders, fragile X mental retardation 1 (fmr1) and Dopamine receptor (DopR). We cloned cDNAs of their Gryllus homologues, Gb'fmr1, Gb'DopRI, and Gb'DopRII, and analyzed their functions with use of nymphal RNA interference (RNAi). For Gb'fmr1, three major phenotypes were observed: (1) abnormal wing postures, (2) abnormal calling song, and (3) loss of the circadian locomotor rhythm, while for Gb'DopRI, defects of wing posture and morphology were found. These results indicate that the cricket has the potential to become a novel model system to explore human neuronal pathogenic mechanisms and to screen therapeutic drugs by RNAi.

  • egfr signaling is required for re establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph
    Developmental Biology, 2008
    Co-Authors: Taro Nakamura, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Sumihare Noji
    Abstract:

    Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.

Hideyo Ohuchi - One of the best experts on this subject based on the ideXlab platform.

  • leg regeneration is epigenetically regulated by histone h3k27 methylation in the cricket Gryllus bimaculatus
    Development, 2015
    Co-Authors: Yoshimasa Hamada, Taro Mito, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Tetsuya Bando, Kenji Tomioka, Hideyo Ohuchi
    Abstract:

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.

  • analysis of rna seq data reveals involvement of jak stat signalling during leg regeneration in the cricket Gryllus bimaculatus
    Development, 2013
    Co-Authors: Tetsuya Bando, Hideyo Ohuchi, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Yoshimasa Hamada, Takuro Kida, Yuji Matsuoka, Taro Mito
    Abstract:

    In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.

  • loss of function analyses of the fragile x related and dopamine receptor genes by rna interference in the cricket Gryllus bimaculatus
    Developmental Dynamics, 2009
    Co-Authors: Aska Hamada, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Kenji Tomioka, Eri Hondasumi, Sumihare Noji
    Abstract:

    In order to explore a possibility that the cricket Gryllus bimaculatus would be a useful model to unveil molecular mechanisms of human diseases, we performed loss-of-function analyses of Gryllus genes homologous to human genes that are responsible for human disorders, fragile X mental retardation 1 (fmr1) and Dopamine receptor (DopR). We cloned cDNAs of their Gryllus homologues, Gb'fmr1, Gb'DopRI, and Gb'DopRII, and analyzed their functions with use of nymphal RNA interference (RNAi). For Gb'fmr1, three major phenotypes were observed: (1) abnormal wing postures, (2) abnormal calling song, and (3) loss of the circadian locomotor rhythm, while for Gb'DopRI, defects of wing posture and morphology were found. These results indicate that the cricket has the potential to become a novel model system to explore human neuronal pathogenic mechanisms and to screen therapeutic drugs by RNAi.

  • egfr signaling is required for re establishing the proximodistal axis during distal leg regeneration in the cricket Gryllus bimaculatus nymph
    Developmental Biology, 2008
    Co-Authors: Taro Nakamura, Taro Mito, Katsuyuki Miyawaki, Hideyo Ohuchi, Sumihare Noji
    Abstract:

    Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.

  • divergent and conserved roles of extradenticle in body segmentation and appendage formation respectively in the cricket Gryllus bimaculatus
    Developmental Biology, 2008
    Co-Authors: Taro Mito, Hideyo Ohuchi, Taro Nakamura, Tomohiro Uda, Monica Ronco, Sumihare Noji
    Abstract:

    The cricket Gryllus bimaculatus is a typical hemimetabolous intermediate germ insect, in which the processes of segmentation and appendage formation differ from those in Drosophila, a holometabolous long germ insect. In order to compare their developmental mechanisms, we have focused on Gryllus orthologs of the Drosophila developmental regulatory genes and studied their functions. Here, we report a functional analysis of the Gryllus ortholog of extradenticle (Gb'exd) using embryonic and parental RNA interference (RNAi) techniques. We found the following: (1) RNAi suppression of Gb'exd results in the deletion or fusion of body segments. Especially the head was often very severely affected. This gap-like phenotype may be related to reduced expression of the gap genes hunchback and Kruppel in early RNAi germbands. (2) In the appendages, several segments (podomeres) were fused. (3) Head appendages including the antenna were transformed to a leg-like structure consisting of at least one proximal podomere as well as several tarsomeres. The defects in appendages are reminiscent of the phenotype caused by large exd clones in Drosophila antennal discs. These findings led us to the conclusion that (1) Gb'exd is required for segment patterning in the gnathal to abdominal region, acting in a gap gene-like manner in the anterior region. (2) Gb'exd plays important roles in formation of the appendages and the determination of their identities, acting as a regulatory switch that chooses between the fates of head appendages versus the appendage ground state. Although functions of Gb'exd in appendage patterning appear fundamentally conserved between Gryllus and Drosophila, its role in body segmentation may differ from that of Drosophila exd.

Taro Nakamura - One of the best experts on this subject based on the ideXlab platform.

  • injecting Gryllus bimaculatus eggs
    Journal of Visualized Experiments, 2019
    Co-Authors: Samantha K Barry, Taro Nakamura, Yuji Matsuoka, Christoph Straub, Hadley Wilson Horch, Cassandra G. Extavour
    Abstract:

    Altering gene function in a developing organism is central to different kinds of experiments. While tremendously powerful genetic tools have been developed in traditional model systems, it is difficult to manipulate genes or messenger RNA (mRNA) in most other organisms. At the same time, evolutionary and comparative approaches rely on an exploration of gene function in many different species, necessitating the development and adaptation of techniques for manipulating expression outside currently genetically tractable species. This protocol describes a method for injecting reagents into cricket eggs to assay the effects of a given manipulation on embryonic or larval development. Instructions for how to collect and inject eggs with beveled needles are described. This relatively straightforward technique is flexible and potentially adaptable to other insects. One can gather and inject dozens of eggs in a single experiment, and survival rates for buffer-only injections improve with practice and can be as high as 80%. This technique will support several types of experimental approaches including injection of pharmacological agents, in vitro capped mRNA to express genes of interest, double-stranded RNA (dsRNA) to achieve RNA interference, use of clustered regularly interspaced short palindromic repeats (CRISPR) in concert with CRISPR-associated protein 9 (Cas9) reagents for genomic modification, and transposable elements to generate transient or stable transgenic lines.

  • hox genes limit germ cell formation in the short germ insect Gryllus bimaculatus
    bioRxiv, 2018
    Co-Authors: Austen A Barnett, Taro Nakamura, Cassandra G. Extavour
    Abstract:

    Hox genes are conserved transcription factor-encoding genes that specify the identity of body regions in bilaterally symmetrical animals. In the cricket Gryllus bimaculatus, a member of the hemimetabolous insect group Orthoptera, the induction of a subset of mesodermal cells to form the primordial germ cells (PGCs) is restricted to the second through the fourth abdominal segments (A2-A4). In numerous insect species, the Hox genes Sex-combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx) and abdominal-A (abd-A) jointly regulate the identities of middle and posterior body segments, suggesting that these genes may restrict PGC formation to specific abdominal segments in Gryllus. Here we show that all of these Hox genes, either individually or in segment-specific combinations, restrict PGC formation. Our data provides evidence for a segmental Hox code used to regulate the placement of PGC formation, reminiscent of the segmental Hox codes used in other arthropod groups to establish other aspects of segmental identity. These data also provide, to our knowledge, the first evidence for this ancient group of genes in determining PGC placement within the context of axial patterning in any animal studied thus far.

  • the transcriptional repressor blimp 1 acts downstream of bmp signaling to generate primordial germ cells in the cricket Gryllus bimaculatus
    Development, 2016
    Co-Authors: Taro Nakamura, Cassandra G. Extavour
    Abstract:

    Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.

  • leg regeneration is epigenetically regulated by histone h3k27 methylation in the cricket Gryllus bimaculatus
    Development, 2015
    Co-Authors: Yoshimasa Hamada, Taro Mito, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Tetsuya Bando, Kenji Tomioka, Hideyo Ohuchi
    Abstract:

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.

  • analysis of rna seq data reveals involvement of jak stat signalling during leg regeneration in the cricket Gryllus bimaculatus
    Development, 2013
    Co-Authors: Tetsuya Bando, Hideyo Ohuchi, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Yoshimasa Hamada, Takuro Kida, Yuji Matsuoka, Taro Mito
    Abstract:

    In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.

Tetsuya Bando - One of the best experts on this subject based on the ideXlab platform.

  • Bone morphogenetic protein signaling in distal patterning and intercalation during leg regeneration of the cricket, Gryllus bimaculatus.
    Development growth & differentiation, 2018
    Co-Authors: Yoshiyasu Ishimaru, Tetsuya Bando
    Abstract:

    The cricket, Gryllus bimaculatus, is a classic model of leg regeneration following amputation. We previously demonstrated that Gryllus decapentaplegic (Gb'dpp) is expressed during leg regeneration, although it remains unclear whether it is essential for this process. In this study, double-stranded RNA targeting the Smad mathers-against-dpp homolog, Gb'mad, was used to examine the role of bone morphogenetic protein (BMP) signaling in the leg regeneration process of Gryllus bimaculatus. RNA interference (RNAi)-mediated knockdown of Gb'mad led to a loss of tarsus regeneration at the most distal region of regenerating leg segments. Moreover, we confirmed that the phenotype obtained by knockdown of Dpp type I receptor, Thick veins (Gb'tkv), closely resembled that observed for Gb'mad RNAi crickets, thereby suggesting that the BMP signaling pathway is indispensable for the initial stages of tarsus formation. Interestingly, knockdown of Gb'mad and Gb'tkv resulted in significant elongation of regenerating tibia along the proximodistal axis compared with normal legs. Moreover, our findings indicate that during the regeneration of tibia, the BMP signaling pathway interacts with Dachsous/Fat (Gb'Ds/Gb'Ft) signaling and dachshund (Gb'dac) to re-establish positional information and regulate determination of leg size. Based on these observations, we discuss possible roles for Gb'mad in the distal patterning and intercalation processes during leg regeneration in Gryllus bimaculatus.

  • Additional file 3: of A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes
    2018
    Co-Authors: Yuki Kutaragi, Tetsuya Bando, Yoshiyuki Moriyama, Atsushi Tokuoka, Yasuaki Tomiyama, Motoki Nose, Takayuki Watanabe, Kenji Tomioka
    Abstract:

    Figure S2. Gb’c-fosRNAi significantly down-regulated both Gb’c-fosA and Gb’c-fosB mRNA levels in the optic lobe of the cricket Gryllus bimaculatus (**P 

  • Additional file 4: of A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes
    2018
    Co-Authors: Yuki Kutaragi, Tetsuya Bando, Yoshiyuki Moriyama, Atsushi Tokuoka, Yasuaki Tomiyama, Motoki Nose, Takayuki Watanabe, Kenji Tomioka
    Abstract:

    Figure S3. A: Gb’c-fosARNAi had no significant effects on the light induced phase advance in the cricket Gryllus bimaculatus. A 3 h light pulse was given at ZT20 on the day of transfer to DD, which was seven days after dsRNA injection. Numbers in the parenthesis indicate the number of animals used. B and C: Gb’c-fosARNAi significantly knocked down Gb’c-fosA mRNA levels (*P 

  • Additional file 2: of A novel photic entrainment mechanism for the circadian clock in an insect: involvement of c-fos and cryptochromes
    2018
    Co-Authors: Yuki Kutaragi, Tetsuya Bando, Yoshiyuki Moriyama, Atsushi Tokuoka, Yasuaki Tomiyama, Motoki Nose, Takayuki Watanabe, Kenji Tomioka
    Abstract:

    Figure S1. Effect of RNAi of cry genes on locomotor activity during the first 3 h after light-on in the cricket Gryllus bimaculatus. The activity was measured on the first day after 6 h phase advance of light-on. Error bars indicate SEM. Numbers in parenthesis indicate the number of animals used. Gb’cry2RNAi and Gb’cry1RNAi/Gb’cry2RNAi significantly reduced the light-induced locomotor activity compared to DsRed2RNAi treatment (*P 

  • leg regeneration is epigenetically regulated by histone h3k27 methylation in the cricket Gryllus bimaculatus
    Development, 2015
    Co-Authors: Yoshimasa Hamada, Taro Mito, Taro Nakamura, Sumihare Noji, Yoshiyasu Ishimaru, Tetsuya Bando, Kenji Tomioka, Hideyo Ohuchi
    Abstract:

    Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)RNAi and was increased by Gb'UtxRNAi. Regenerated Gb'E(z)RNAi cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'UtxRNAi cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)RNAi regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'UtxRNAi regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression.