Halogenated Compound

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 153 Experts worldwide ranked by ideXlab platform

Rui Santos - One of the best experts on this subject based on the ideXlab platform.

  • carbon nutrient balance in relation to biomass production and Halogenated Compound content in the red alga asparagopsis taxiformis bonnemaisoniaceae 1
    Journal of Phycology, 2012
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

  • CARBON/NUTRIENT BALANCE IN RELATION TO BIOMASS PRODUCTION AND Halogenated Compound CONTENT IN THE RED ALGA ASPARAGOPSIS TAXIFORMIS (BONNEMAISONIACEAE)(1).
    Journal of Phycology, 2011
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

Leonardo Mata - One of the best experts on this subject based on the ideXlab platform.

  • carbon nutrient balance in relation to biomass production and Halogenated Compound content in the red alga asparagopsis taxiformis bonnemaisoniaceae 1
    Journal of Phycology, 2012
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

  • CARBON/NUTRIENT BALANCE IN RELATION TO BIOMASS PRODUCTION AND Halogenated Compound CONTENT IN THE RED ALGA ASPARAGOPSIS TAXIFORMIS (BONNEMAISONIACEAE)(1).
    Journal of Phycology, 2011
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

Christian Klinke - One of the best experts on this subject based on the ideXlab platform.

  • Shape Evolution of CdSe Nanoparticles controlled by Halogen Compounds
    Chemistry of Materials, 2014
    Co-Authors: Michaela Meyns, Fabiola Iacono, Cristina Palencia, Jan Geweke, Mauricio D. Coderch, Ursula E. A. Fittschen, José M. Gallego, Roberto Otero, Beatriz H. Juárez, Christian Klinke
    Abstract:

    Halogen Compounds are capable of playing an important role in the manipulation of nanoparticle shapes and properties. In a new approach, we examined the shape evolution of CdSe nanorods to hexagonal pyramids in a hot-injection synthesis under the influence of Halogenated additives in the form of organic chlorine, bromine and iodine Compounds. Supported by DFT calculations, this shape evolution is explained as a result of X-type ligand coordination to sloped and flat Cd-rich facets and an equilibrium shape strongly influenced by halides. Synchrotron XPS measurements and TXRF results show that the shape evolution is accompanied by a modification in the chemical composition of the ligand sphere. Our experimental results suggest that the molecular structure of the Halogenated Compound is related to the degree of the effect on both rod growth and further shape evolution. This presents a new degree of freedom in nanoparticle shape control and highlights the role of additives in nanoparticle synthesis and their possible in situ formation of ligands.

  • shape evolution of cdse nanoparticles controlled by halogen Compounds
    Chemistry of Materials, 2014
    Co-Authors: Michaela Meyns, Fabiola Iacono, Cristina Palencia, Jan Geweke, Mauricio D. Coderch, Ursula E. A. Fittschen, Roberto Otero, Beatriz H. Juárez, Jose Gallego, Christian Klinke
    Abstract:

    Halogen Compounds are capable of playing an important role in the manipulation of nanoparticle shapes and properties. In a new approach, we examined the shape evolution of CdSe nanorods to hexagonal pyramids in a hot-injection synthesis under the influence of Halogenated additives in the form of organic chlorine, bromine and iodine Compounds. Supported by density functional theory calculations, this shape evolution is explained as a result of X-type ligand coordination to sloped and flat Cd-rich facets and an equilibrium shape strongly influenced by halides. Synchrotron XPS measurements and TXRF results show that the shape evolution is accompanied by a modification in the chemical composition of the ligand sphere. Our experimental results suggest that the molecular structure of the Halogenated Compound is related to the degree of the effect on both rod growth and further shape evolution. This presents a new degree of freedom in nanoparticle shape control and highlights the role of additives in nanoparticle synthesis and their possible in situ formation of ligands.

Helena Gaspar - One of the best experts on this subject based on the ideXlab platform.

  • carbon nutrient balance in relation to biomass production and Halogenated Compound content in the red alga asparagopsis taxiformis bonnemaisoniaceae 1
    Journal of Phycology, 2012
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

  • CARBON/NUTRIENT BALANCE IN RELATION TO BIOMASS PRODUCTION AND Halogenated Compound CONTENT IN THE RED ALGA ASPARAGOPSIS TAXIFORMIS (BONNEMAISONIACEAE)(1).
    Journal of Phycology, 2011
    Co-Authors: Leonardo Mata, Helena Gaspar, Rui Santos
    Abstract:

    We tested how the availability of carbon and nitrogen determines both the production of Asparagopsis taxiformis (Delile) V. Trevis. and content of the two major halocarbons, bromoform and dibromoacetic acid. The Halogenated secondary metabolites of Asparagopsis species are particularly interesting from an applied perspective due to their remarkable antimicrobial activity. Terrestrial ecologists named the relationship between resources and secondary metabolites as the carbon (C)/nutrient balance (CNB) hypothesis. This relationship was tested both in the laboratory, with a factorial analysis using different concentrations of total ammonia (TAN) and dissolved inorganic carbon (DIC), and in an integrated aquaculture system where TAN and DIC fluxes of fish effluent were manipulated. The total C/N content of A. taxiformis biomass cultivated in laboratory was highly significantly linearly related to the content of both halocarbons, as predicted by the CNB hypothesis. A. taxiformis cultivated at low levels of carbon and high levels of nitrogen (N) (lowest C/N ratio) had the lowest content in both Halogenated metabolites. Increased availability of CO2 in the medium resulted in a general higher halocarbon content in the biomass, even though the effect was only statistically significant for bromoform at high levels of N. The farm experiments supported the results of the laboratory experiments. DIC fluxes had the highest effect on the production of both bromoform and biomass, as shown by multiple regression analysis. In A. taxiformis integrated aquaculture, C, rather than N, is the most important factor affecting the production of biomass and of valuable halocarbon secondary metabolites.

Peter Haglund - One of the best experts on this subject based on the ideXlab platform.

  • Non-targeted screening workflows for gas chromatography–high-resolution mass spectrometry analysis and identification of biomagnifying contaminants in biota samples
    Analytical and Bioanalytical Chemistry, 2020
    Co-Authors: Andriy Rebryk, Peter Haglund
    Abstract:

    The health of key species in the Baltic region has been impaired by exposure to anthropogenic hazardous substances (AHSs), which accumulate in organisms and are transferred through food chains. There is, thus, a need for comprehensive characterization of the occurrence and accumulation of AHSs in the ecosystem. In this study, we use a non-target screening (NTS) approach for this purpose. A major challenge in NTS of biological samples is the removal of matrix components such as lipids that may interfere with the detection and identification of Compounds of interest. Here, we combine gel permeation chromatography with Florisil^® column fractionation to achieve sufficient lipid removal for gas chromatography–high-resolution mass spectrometry analysis using electron ionization (EI) and electron capture negative ion chemical ionization (ECNI). In addition, we present new data processing workflows designed to systematically find and identify frequently occurring and biomagnifying AHSs, including known, emerging, and new contaminants. Using these workflows, we discovered a wide range of contaminants in tissue samples from blue mussels, fish, and marine mammals, and calculated their biomagnification factors (BMFs). Compounds with BMFs above 1 for herring and at least one marine mammal included legacy chlorinated pollutants (polychlorinated biphenyls, DDTs, chloro-benzenes/cyclohexanes, chlordanes, toxaphenes, dieldrin), polybrominated diphenyl ethers (PBDEs), and brominated biphenyls. However, there were also several Halogenated natural products (Halogenated methoxylated brominated diphenyl ethers, 1′-methyl-1,2′-bipyrroles, 1,1′-dimethyl-2,2′-bipyrroles, and the Halogenated monoterpene mixed Halogenated Compound 1) as well as the novel flame retardant Dechlorane 602 and several polycyclic aromatic hydrocarbons, terpenoids, and steroids. The legacy pollutants exhibited the expected biomagnification behavior, demonstrating the utility of the unguided data processing workflow. Graphical abstract