HAMP

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Barry L Taylor - One of the best experts on this subject based on the ideXlab platform.

  • delineating pas HAMP interaction surfaces and signalling associated changes in the aerotaxis receptor aer
    Molecular Microbiology, 2016
    Co-Authors: Darysbel Garcia, Kylie J Watts, Mark S Johnson, Barry L Taylor
    Abstract:

    The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.

  • different conformations of the kinase on and kinase off signaling states in the aer HAMP domain
    Journal of Bacteriology, 2011
    Co-Authors: Kylie J Watts, Mark S Johnson, Barry L Taylor
    Abstract:

    HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2′ helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2′ helices, which may be the signal that is transmitted to the kinase control region of Aer.

  • pas poly HAMP signalling in aer 2 a soluble haem based sensor
    Molecular Microbiology, 2011
    Co-Authors: Kylie J Watts, Barry L Taylor, Mark S Johnson
    Abstract:

    Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.

  • structure function relationships in the HAMP and proximal signaling domains of the aerotaxis receptor aer
    Journal of Bacteriology, 2008
    Co-Authors: Kylie J Watts, Mark S Johnson, Barry L Taylor
    Abstract:

    Aer, the Escherichia coli aerotaxis receptor, faces the cytoplasm, where the PAS (Per-ARNT-Sim)-flavin adenine dinucleotide (FAD) domain senses redox changes in the electron transport system or cytoplasm. PAS-FAD interacts with a HAMP (histidine kinase, adenylyl cyclase, methyl-accepting protein, and phosphatase) domain to form an input-output module for Aer signaling. In this study, the structure of the Aer HAMP and proximal signaling domains was probed to elucidate structure-function relationships important for signaling. Aer residues 210 to 290 were individually replaced with cysteine and then cross-linked in vivo. The results confirmed that the Aer HAMP domain is composed of two alpha-helices separated by a structured loop. The proximal signaling domain consisted of two alpha-helices separated by a short undetermined structure. The Af1503 HAMP domain from Archaeoglobus fulgidus was recently shown to be a four-helix bundle. To test whether the Af1503 HAMP domain is a prototype for the Aer HAMP domain, the latter was modeled using coordinates from Af1503. Several findings supported the hypothesis that Aer has a four-helix HAMP structure: (i) cross-linking independently identified the same residues at the dimer interface that were predicted by the model, (ii) the rate of cross-linking for residue pairs was inversely proportional to the beta-carbon distances measured on the model, and (iii) clockwise lesions that were not contiguous in the linear Aer sequence were clustered in one region in the folded HAMP model, defining a potential site of PAS-HAMP interaction during signaling. In silico modeling of mutant Aer proteins indicated that the four-helix HAMP structure was important for Aer stability or maturation. The significance of the HAMP and proximal signaling domain structure for signal transduction is discussed.

  • aer on the inside looking out paradigm for a pas HAMP role in sensing oxygen redox and energy
    Molecular Microbiology, 2007
    Co-Authors: Barry L Taylor
    Abstract:

    Aer, the Escherichia coli aerotaxis (oxygen-sensing) receptor, is representative of a small class of receptors that face the cytoplasm in bacteria. Instead of sensing oxygen directly, Aer detects redox changes in the electron transport system or cytoplasm when the bacteria enter or leave a hypoxic microniche. As a result, Aer sensing also enables bacteria to avoid environments where carbon deficiency, unfavourable reduction potential or other insults would limit energy production. An FAD-binding PAS domain is the sensor for Aer and a HAMP domain interacts with the PAS domain to form an input-output module for signal transduction. By analogy to the first solution structure of an isolated HAMP domain from Archaeoglobus, Aer HAMP is proposed to fold into a four-helix bundle that rotates between a signal-on and signal-off conformation. Aer is the first protein in which a PAS-HAMP input-output module has been investigated. The structure and signal transduction mechanism of Aer is providing important insights into signalling by PAS and HAMP domains.

John S. Parkinson - One of the best experts on this subject based on the ideXlab platform.

  • a zipped helix cap potentiates HAMP domain control of chemoreceptor signaling
    Proceedings of the National Academy of Sciences of the United States of America, 2018
    Co-Authors: Caralyn E Flack, John S. Parkinson
    Abstract:

    Environmental awareness is an essential attribute for all organisms. The chemotaxis system of Escherichia coli provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense chemical gradients with transmembrane proteins [methyl-accepting chemotaxis proteins (MCPs)] that have an extracellular ligand-binding domain and intracellular histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases (HAMP) and signaling domains that govern locomotor behavior. HAMP domains are versatile input–output elements that operate in a variety of bacterial signaling proteins, including the sensor kinases of two-component regulatory systems. The MCP HAMP domain receives stimulus information and in turn modulates output signaling activity. This study describes mutants of the Escherichia coli serine chemoreceptor, Tsr, that identify a heptad-repeat structural motif (LLF) at the membrane-proximal end of the receptor signaling domain that is critical for HAMP output control. The homodimeric Tsr signaling domain is an extended, antiparallel, four-helix bundle that controls the activity of an associated kinase. The N terminus of each subunit adjoins the HAMP domain; the LLF residues lie at the C terminus of the methylation-helix bundle. We found, by using in vivo Forster resonance energy transfer kinase assays, that most amino acid replacements at any of the LLF residues abrogate chemotactic responses to serine and lock Tsr output in a kinase-active state, impervious to HAMP-mediated down-regulation. We present evidence that the LLF residues may function like a leucine zipper to promote stable association of the C-terminal signaling helices, thereby creating a metastable helix-packing platform for the N-terminal signaling helices that facilitates conformational control by the HAMP domains in MCP-family chemoreceptors.

  • HAMP: The CPU Domain of Bacterial Chemoreceptors
    Biophysical Journal, 2015
    Co-Authors: John S. Parkinson
    Abstract:

    The transmembrane chemoreceptors that mediate chemotactic behaviors in E. coli contain a HAMP domain at the cytoplasmic face of the membrane that governs their input-output signaling transactions. The four-helix HAMP bundle receives stimulus signals from the periplasmic chemoeffector-binding domain via a five-residue control cable connection to a transmembrane helix (TM2). HAMP in turn, through its structural interactions with an adjoining four-helix methylation (MH) bundle, modulates the activity of CheA, a cytoplasmic histidine autokinase bound at the membrane-distal tip of the receptor molecule.To investigate the mechanism of HAMP signaling in Tsr, the E. coli serine chemoreceptor, my lab has characterized the serine sensitivities and response cooperativities of a large collection of mutant receptors that have amino acid replacements in the TM2 - control cable - HAMP - MH bundle region, using an in vivo FRET-based assay of CheA kinase activity.Signaling by wild-type Tsr follows a two-state model of shifts between kinase-activating and kinase-deactivating outputs. Both states correspond to ensembles of mutationally distinct HAMP conformations. A variety of HAMP structural lesions, including ablation of the entire domain, shift receptor output toward the kinase-on state, indicating that the signaling role of HAMP is not to activate CheA, but rather to down-regulate kinase activity in response to chemoattractant ligands. Stimulus signals from TM2 and the control cable probably trigger output responses by modulating the packing stability of HAMP: A loosely packed HAMP bundle allows kinase activity; a tightly packed HAMP bundle deactivates CheA. These signaling shifts occur through an opposing structural interplay of packing stability in the HAMP and MH bundles. Loosely packed methylation helices produce kinase-off output and serve as substrates for subsequent receptor modifications that enhance MH packing during the sensory adaptation phase of an attractant response.

  • functional suppression of HAMP domain signaling defects in the e coli serine chemoreceptor
    Journal of Molecular Biology, 2014
    Co-Authors: John S. Parkinson
    Abstract:

    HAMP domains play key signaling roles in many bacterial receptor proteins. The four-helix HAMP bundle of the homodimeric Escherichia coli serine chemoreceptor (Tsr) interacts with an adjoining four-helix sensory adaptation bundle to regulate the histidine autokinase CheA bound to the cytoplasmic tip of the Tsr molecule. The adaptation helices undergo reversible covalent modifications that tune the stimulus-responsive range of the receptor: unmodified E residues promote kinase-off output, and methylated E residues or Q replacements at modification sites promote kinase-on output. We used mutationally imposed adaptational modification states and cells with various combinations of the sensory adaptation enzymes, CheR and CheB, to characterize the signaling properties of mutant Tsr receptors that had amino acid replacements in packing layer 3 of the HAMP bundle and followed in vivo CheA activity with an assay based on Forster resonance energy transfer. We found that an alanine or a serine replacement at HAMP residue I229 effectively locked Tsr output in a kinase-on state, abrogating chemotactic responses. A second amino acid replacement in the same HAMP packing layer alleviated the I229A and I229S signaling defects. Receptors with the suppressor changes alone mediated chemotaxis in adaptation-proficient cells but exhibited altered sensitivity to serine stimuli. Two of the suppressors (S255E and S255A) shifted Tsr output toward the kinase-off state, but two others (S255G and L256F) shifted output toward a kinase-on state. The alleviation of locked-on defects by on-shifted suppressors implies that Tsr-HAMP has several conformationally distinct kinase-active output states and that HAMP signaling might involve dynamic shifts over a range of bundle conformations.

  • HAMP domain structural determinants for signalling and sensory adaptation in tsr the escherichia coli serine chemoreceptor
    Molecular Microbiology, 2014
    Co-Authors: Peter Ames, Qin Zhou, John S. Parkinson
    Abstract:

    HAMP domains mediate input-output transactions in many bacterial signaling proteins. To clarify the mechanistic logic of HAMP signaling, we constructed Tsr-HAMP deletion derivatives and characterized their steady-state signal outputs and sensory adaptation properties with flagellar rotation and receptor methylation assays. Tsr molecules lacking the entire HAMP domain or just the HAMP-AS2 helix generated clockwise output signals, confirming that kinase activation is the default output state of the chemoreceptor signaling domain and that attractant stimuli shift HAMP to an overriding kinase-off signaling state to elicit counter-clockwise flagellar responses. Receptors with deletions of the AS1 helices, which free the AS2 helices from bundle-packing constraints, exhibited kinase-off signaling behavior that depended on three C-terminal hydrophobic residues of AS2. We conclude that AS2/AS2' packing interactions alone can play an important role in controlling output kinase activity. Neither kinase-on nor kinase-off HAMP deletion outputs responded to sensory adaptation control, implying that out-of-range conformations or bundle-packing stabilities of their methylation helices prevent substrate recognition by the adaptation enzymes. These observations support the previously proposed biphasic, dynamic-bundle mechanism of HAMP signaling and additionally show that the structural interplay of helix-packing interactions between HAMP and the adjoining methylation helices is critical for sensory adaptation control of receptor output.

  • biphasic control logic of HAMP domain signalling in the escherichia coli serine chemoreceptor
    Molecular Microbiology, 2011
    Co-Authors: Qin Zhou, Peter Ames, John S. Parkinson
    Abstract:

    HAMP domains mediate input-output communication in many bacterial signalling proteins. To explore the dynamic bundle model of HAMP signalling (Zhou et al., Mol. Microbiol. 73: 801, 2009), we characterized the signal outputs of 118 HAMP missense mutants of the serine chemoreceptor, Tsr, by flagellar rotation patterns. Receptors with proline or charged amino acid replacements at critical hydrophobic packing residues in the AS1 and AS2 HAMP helices had locked kinase-off outputs, indicating that drastic destabilization of the Tsr-HAMP bundle prevents kinase activation, both in the absence and presence of the sensory adaptation enzymes, CheB and CheR. Attractant-mimic lesions that enhance the structural stability of the HAMP bundle also suppressed kinase activity, demonstrating that Tsr-HAMP has two kinase-off output states at opposite extremes of its stability range. HAMP mutants with locked-on kinase outputs appeared to have intermediate bundle stabilities, implying a biphasic relationship between HAMP stability and kinase activity. Some Tsr-HAMP mutant receptors exhibited reversed output responses to CheB and CheR action that are readily explained by a biphasic control logic. The findings of this study provide strong support for a three-state dynamic bundle model of HAMP signalling in Tsr, and possibly in other bacterial transducers as well.

Kylie J Watts - One of the best experts on this subject based on the ideXlab platform.

  • delineating pas HAMP interaction surfaces and signalling associated changes in the aerotaxis receptor aer
    Molecular Microbiology, 2016
    Co-Authors: Darysbel Garcia, Kylie J Watts, Mark S Johnson, Barry L Taylor
    Abstract:

    The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.

  • architecture of the soluble receptor aer2 indicates an in line mechanism for pas and HAMP domain signaling
    Journal of Molecular Biology, 2013
    Co-Authors: Michael V Airola, Kylie J Watts, Nattakan Sukomon, Peter P Borbat, Jack H Freed, Joanne Widom, Doowon Huh, Ria Sircar, Brian R Crane
    Abstract:

    Abstract Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per–Arnt–Sim) and poly-HAMP (histidine kinase–adenylyl cyclase–methyl-accepting chemotaxis protein–phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and Ec DOS but propagate to the Iβ strand in a manner predicted to alter PAS–PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS–HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.

  • HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors
    PLOS Biology, 2013
    Co-Authors: Michael V Airola, Kylie J Watts, Nattakan Sukomon, Dipanjan Samanta, Peter P Borbat, Jack H Freed, Brian R Crane
    Abstract:

    HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between “on” and “off” conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.

  • different conformations of the kinase on and kinase off signaling states in the aer HAMP domain
    Journal of Bacteriology, 2011
    Co-Authors: Kylie J Watts, Mark S Johnson, Barry L Taylor
    Abstract:

    HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2′ helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2′ helices, which may be the signal that is transmitted to the kinase control region of Aer.

  • pas poly HAMP signalling in aer 2 a soluble haem based sensor
    Molecular Microbiology, 2011
    Co-Authors: Kylie J Watts, Barry L Taylor, Mark S Johnson
    Abstract:

    Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.

Sergei Grudinin - One of the best experts on this subject based on the ideXlab platform.

  • two distinct states of the HAMP domain from sensory rhodopsin transducer observed in unbiased molecular dynamics simulations
    PLOS ONE, 2013
    Co-Authors: I Gushchin, Valentin I. Gordeliy, Sergei Grudinin
    Abstract:

    HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.

  • Role of the HAMP Domain Region of Sensory Rhodopsin Transducers in Signal Transduction
    Biochemistry, 2010
    Co-Authors: Ivan Gushchin, Valentin I. Gordeliy, Sergei Grudinin
    Abstract:

    Archaea are able to sense light via the complexes of sensory rhodopsins I and II and their corresponding chemoreceptor-like transducers HtrI and HtrII. Though generation of the signal has been studied in detail, the mechanism of its propagation to the cytoplasm remains obscured. The cytoplasmic part of the transducer consists of adaptation and kinase activity modulating regions, connected to transmembrane helices via two HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, phosphatases) domains. The inter-HAMP region of Natronomonas pharaonis HtrII (NpHtrII) was found to be α-helical [Hayashi, K., et al. (2007) Biochemistry 46, 14380−14390]. We studied the inter-HAMP regions of NpHtrII and other phototactic signal transducers by means of molecular dynamics. Their structure is found to be a bistable asymmetric coiled coil, in which the protomers are longitudinally shifted by 1.3 A. The free energy penalty for the symmetric structure is estimated to be 1.2−1.5 kcal/mol depending on the molarity of the solvent. Both flanking HAMP domains are mechanistically coupled to the inter-HAMP region and are asymmetric. The longitudinal shift in the inter-HAMP region is coupled with the in-plane displacement of the cytoplasmic part by 8.6 A relative to the transmembrane part. The established properties suggest that (1) the signal may be transduced through the inter-HAMP domain switching and (2) the inter-HAMP region may allow cytoplasmic parts of the transducers to come sufficiently close to each other to form oligomers.

Joachim E Schultz - One of the best experts on this subject based on the ideXlab platform.

  • biochemical characterization of the tandem HAMP domain from natronomonas pharaonis as an intraprotein signal transducer
    FEBS Journal, 2014
    Co-Authors: Janani Natarajan, Anita Schultz, Ursula Kurz, Joachim E Schultz
    Abstract:

    Available structures of HAMP domains suggest rotation as one potential mechanism in intraprotein signal transduction. It has been proposed that in poly-HAMP modules the signal sign is inverted with each additional HAMP. We examined signal transduction through the HAMP tandem domain from the phototaxis transducer of the halophilic archaeon Natronomonas pharaonis in membrane-bound chimeras consisting of the Escherichia coli chemotaxis receptor for serine, Tsr, as an input and the mycobacterial adenylyl cyclase Rv3645 as an output domain, i.e. the basic chimera was ‘Tsr–NpHAMP tandem–Rv3645 cyclase’. Neither of the NpHAMP units alone nor the NpHAMP tandem transduced a serine signal. After five targeted point mutations in the first α-helix of NpHAMP1, the non-functional NpHAMP modules combined into a functional HAMP tandem. 1 mm serine significantly inhibited cyclase activity (−35%; IC50 = 30 μm) in disagreement with the structure-based predictions. Surprisingly, replacement of NpAS11 in the tandem by the respective AS1 from HAMPTsr resulted in signal inversion, i.e. serine activated cyclase (+129%; EC50 = 10 μm). Examination of 48 mutants of AS11 in the HAMP tandem including two residues of a putative N-terminal control cable identified five residues in NpAS11 which probably define different ground states of the output domain and thus affect the sign of signal output. The data question the predicted HAMP rotation as the predominant mechanism of intraprotein signal transduction and point to as yet unrecognized conformational motions of HAMP domains in intraprotein signaling.

  • HAMP domain mediated signal transduction probed with a mycobacterial adenylyl cyclase as a reporter
    Journal of Biological Chemistry, 2012
    Co-Authors: Laura Garcia Mondejar, Anita Schultz, Andrei N. Lupas, Joachim E Schultz
    Abstract:

    HAMP domains, ∼55 amino acid motifs first identified in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases, operate as signal mediators in two-component signal transduction proteins. A bioinformatics study identified a coevolving signal-accepting network of 10 amino acids in membrane-delimited HAMP proteins. To probe the functionality of this network we used a HAMP containing mycobacterial adenylyl cyclase, Rv3645, as a reporter enzyme in which the membrane anchor was substituted by the Escherichia coli chemotaxis receptor for serine (Tsr receptor) and the HAMP domain alternately with that from the protein Af1503 of the archaeon Archaeoglobus fulgidus or the Tsr receptor. In a construct with the Tsr-HAMP, cyclase activity was inhibited by serine, whereas in a construct with the HAMP domain from A. fulgidus, enzyme activity was not responsive to serine. Amino acids of the signal-accepting network were mutually swapped between both HAMP domains, and serine signaling was examined. The data biochemically tentatively established the functionality of the signal-accepting network. Based on a two-state gearbox model of rotation in HAMP domain-mediated signal propagation, we characterized the interaction between permanent and transient core residues in a coiled coil HAMP structure. The data are compatible with HAMP rotation in signal propagation but do not exclude alternative models for HAMP signaling. Finally, we present data indicating that the connector, which links the α-helices of HAMP domains, plays an important structural role in HAMP function.

  • The Mechanisms of HAMP-Mediated Signaling in Transmembrane Receptors
    Structure (London England : 1993), 2011
    Co-Authors: Hedda U. Ferris, Joachim E Schultz, Stanislaw Dunin-horkawicz, Laura Garcia Mondejar, Michael Hulko, Klaus Hantke, Jörg Martin, Kornelius Zeth, Andrei N. Lupas, Murray Coles
    Abstract:

    HAMP domains mediate signal transduction in over 7500 enzyme-coupled receptors represented in all kingdoms of life. The HAMP domain of the putative archaeal receptor Af1503 has a parallel, dimeric, four-helical coiled coil structure, but with unusual core packing, related to canonical packing by concerted axial rotation of the helices. This has led to the gearbox model for signal transduction, whereby the alternate packing modes correspond to signaling states. Here we present structures of a series of Af1503 HAMP variants. We show that substitution of a conserved small side chain within the domain core (A291) for larger residues induces a gradual transition in packing mode, involving both changes in helix rotation and bundle shape, which are most prominent at the C-terminal, output end of the domain. These are correlated with activity and ligand response in vitro and in vivo by incorporating Af1503 HAMP into mycobacterial adenylyl cyclase assay systems.

  • Transmembrane receptor chimeras to probe HAMP domain function.
    Methods in Enzymology, 2010
    Co-Authors: Jürgen U. Linder, Joachim E Schultz
    Abstract:

    HAMP domains are the central signal converters in bacterial chemotaxis receptors and chemosensory histidine kinases. They link the signal input modules in these proteins, that is, the ligand-binding domains, to the output modules, for example, the histidine kinase domain. A similar architecture is present in the adenylyl cyclase (AC) Rv3645 from Mycobacterium tuberculosis, where a HAMP domain is positioned between the N-terminal membrane anchor and the C-terminal catalytic domain. Because the activity of the catalytic domain responds to alterations in the HAMP domain, a method has been developed which uses the catalytic domain of Rv3645 as a reporter to probe the HAMP domain function of diverse bacterial proteins. A strategy for construction of chimeras between a variety of HAMP domains and the catalytic domain of the AC Rv3645 is described. The enzymes are overexpressed in Escherichia coli and purified by Ni2+-affinity chromatography. AC activity of the chimeras is determined by a radiotracer method published earlier in the series. Results of the mutagenesis of the HAMP domain from the Af1503 protein of Archeoglobus fulgidus are shown as an example for the successful application of the method.

  • the HAMP domain structure implies helix rotation in transmembrane signaling
    Cell, 2006
    Co-Authors: Michael Hulko, Anita Schultz, Joachim E Schultz, Jürgen U. Linder, Jörg Martin, Andrei N. Lupas, Franziska Berndt, Markus Gruber, Vincent Truffault, Murray Coles
    Abstract:

    Summary HAMP domains connect extracellular sensory with intracellular signaling domains in over 7500 proteins, including histidine kinases, adenylyl cyclases, chemotaxis receptors, and phosphatases. The solution structure of an archaeal HAMP domain shows a homodimeric, four-helical, parallel coiled coil with unusual interhelical packing, related to the canonical packing by rotation of the helices. This suggests a model for the mechanism of signal transduction, in which HAMP alternates between the observed conformation and a canonical coiled coil. We explored this mechanism in vitro and in vivo using HAMP domain fusions with a mycobacterial adenylyl cyclase and an E. coli chemotaxis receptor. Structural and functional studies show that the equilibrium between the two forms is dependent on the side-chain size of residue 291, which is alanine in the wild-type protein.