Haynesville Shale

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 399 Experts worldwide ranked by ideXlab platform

A R Ravishankara - One of the best experts on this subject based on the ideXlab platform.

  • instrumentation and measurement strategy for the noaa senex aircraft campaign as part of the southeast atmosphere study 2013
    Atmospheric Measurement Techniques, 2016
    Co-Authors: C Warneke, M Trainer, Joost A De Gouw, D D Parrish, D W Fahey, A R Ravishankara
    Abstract:

    Abstract. Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  • Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013
    Copernicus Publications, 2016
    Co-Authors: C Warneke, J A De Gouw, M Trainer, D D Parrish, D W Fahey, A R Ravishankara, A. M. Middlebrook, C. A. Brock, J. M. Roberts, S. S. Brown
    Abstract:

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions

C Warneke - One of the best experts on this subject based on the ideXlab platform.

  • instrumentation and measurement strategy for the noaa senex aircraft campaign as part of the southeast atmosphere study 2013
    Atmospheric Measurement Techniques, 2016
    Co-Authors: C Warneke, M Trainer, Joost A De Gouw, D D Parrish, D W Fahey, A R Ravishankara
    Abstract:

    Abstract. Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  • Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013
    Copernicus Publications, 2016
    Co-Authors: C Warneke, J A De Gouw, M Trainer, D D Parrish, D W Fahey, A R Ravishankara, A. M. Middlebrook, C. A. Brock, J. M. Roberts, S. S. Brown
    Abstract:

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions

Ursula Hammes - One of the best experts on this subject based on the ideXlab platform.

  • geology of the Haynesville gas Shale in east texas and west louisiana
    2014
    Co-Authors: Ursula Hammes, Julia F W Gale
    Abstract:

    This AAPG Memoir on the Haynesville Shale of East Texas, USA, provides an overview of the main geologic, stratigraphic, sedimentologic, geomechanical, micro-seismic and engineering characteristics of the Haynesville mudrocks. Experts on mudrocks from academia, industry, and government contribute with a variety of topics that describe the Haynesville Shale from basin- to nanaoscale, reflecting the dimensions affecting Shale-gas assessment and demonstrating the variety of techniques applicable to Shale-gas evaluation. The included papers serve not only as examples of Shale-gas analyses of the East Texas Shale basin employing different techniques, but also are examples of approaches to evaluating Shale basins worldwide.

  • Chapter 8: Overview of Haynesville Shale Properties and Production
    2013
    Co-Authors: Fred P. Wang, Ursula Hammes
    Abstract:

    Abstract The Haynesville Shale in northwest Louisiana and east Texas is a geologically unique gas play in which many petrophysical, engineering, and mechanical properties are close to optimal. With high geopressure gradients ranging from 0.8 to >0.95 psi/ft and reservoir pressures ranging from 8000 to 17,000 psi, it is one of the most prolific Shale-gas plays in North America. Through the use of horizontal wells and multiple-stage fracturing, gas production reached >7 Bcf/d in August 2011, and the play has surpassed the Barnett Shale in north Texas as one of the highest gas-producing plays in the United States. The objectives of this study are to investigate the effects of petrophysical, geochemical, geologic, mechanical, and engineering properties, as well as completion practices, on Haynesville Shale production. Core data show that connate water saturations range from 15 to 40% in the Haynesville. Low connate water saturation is attributed to water expulsion by oil and gas during hydrocarbon generation from organic matter within the Shale. Nevertheless, slow fluid escape and gas generation at high temperatures resulted in an abnormally high reservoir pressure and pressure gradient, even in this relatively high porosity rock. The effects of the high geopressure gradient have been to increase reservoir pore pressure, to preserve porosity and permeability, and to enhance free gas content and the brittle nature of the gas Shales. The average porosity of the Haynesville Shale is high, ~11%, and the free gas content is enhanced by high porosity and gas density. Because of the high formation pressures, effective stresses of the Haynesville are low, and laboratory compression tests show that the rocks are highly brittle at these low effective stresses. Production from the Haynesville is a complex function of geopressure gradient, effective stress, reservoir quality, and completion practices. A wide range of completion parameters, such as length of horizontal well, choke size, number of stages, and proppant volume, have been tested to find optimal production strategies. Large choke sizes, which increase initial potential, can have a detrimental effect on long-term production and smaller choke sizes lower the decline rates and increase long-term well productions. Initial potential and production are higher in the east and south regions with higher pressure, carbonate/silica content and total organic carbon than the northwest region in Texas with lower total organic carbon but higher clay content.

  • Haynesville and bossier mudrocks a facies and sequence stratigraphic investigation east texas and louisiana usa
    Marine and Petroleum Geology, 2012
    Co-Authors: Ursula Hammes, Gregory Frebourg
    Abstract:

    Abstract Upper Jurassic Haynesville and Bossier Shale-gas plays of the northwestern Gulf of Mexico (GOM) Basin produce from organic-rich, marine transgressive to highstand mudrocks within mixed carbonate-clastic depositional systems. Modern wireline-log suites from ∼200 deep wells were used for detailed correlations, and 10 + cores throughout the upper Kimmeridgian to lower Tithonian basin were incorporated into detailed facies, stratigraphic, and lithologic analyses. The Haynesville Shale lies within a 2nd-order transgressive systems tract (TST) that encompasses back-stepping ramp carbonates (proximal) and marine Shales (distal) below a maximum flooding surface (MFS). This Shale onlaps retrogradational carbonates and basement highs and is capped by the 2nd-order MFS. Bossier Shales and local sandstones prograde basinward above the Haynesville Shale and downlap the 2nd-order MFS. They grade upward and updip into the thick, highstand systems tract (HST), fluvio-deltaic sandstones of the Cotton Valley Group. Distally, organic-rich facies developed in restricted Bossier environments, creating another productive gas-Shale opportunity. Several preexisting basement highs in the south and carbonate platforms in the northwest and west restrict and partition the basin, thus influencing deposition of highly organic versus nonorganic and siliciclastic-dominated versus carbonate-dominated lithologies. Haynesville and Bossier Shales each compose three upward-coarsening cycles that probably represent 3rd-order sequences within the larger 2nd-order TST and early HST, respectively. Most of the three Bossier 3rd-order cycles are dominated by varying amounts of siliciclastics. Deposition of the Haynesville mudrocks occurred below storm-wave base under mostly dysoxic conditionsm allowing settlement of benthic bivalve communities and bioturbating organisms and oscillating periodically to more anoxic conditions on the seafloor. However, most of the sparse faunae found in these mudrocks are of planktonic origin. Bossier mudrocks exhibited more oxygenated and clastic-rich lithologies related to progradation of the clastic shoreline and sea-level highstand. Knowledge of lithologic, stratigraphic, geochemical, and faunal variations across mudrock basins needs to be detailed so that Shale-gas basins might be successfully explored.

  • geologic analysis of the upper jurassic Haynesville Shale in east texas and west louisiana
    AAPG Bulletin, 2011
    Co-Authors: Ursula Hammes, Scott H Hamlin, Thomas E Ewing
    Abstract:

    The Upper Jurassic Haynesville Shale is currently regarded as one of the most prolific emerging Shale-gas plays in the continental United States. It has estimated play resources of several hundred trillion cubic feet and per-well reserves estimated as much as 7.5 bcf. The reservoir spans more than 16 counties along the boundary of eastern Texas and western Louisiana. Although this basin has a long history of exploration and analysis of its Mesozoic section, a comprehensive subsurface study characterizing the Haynesville Shale has not been conducted. This article is the first to address the structural setting, stratigraphy, depositional environment and facies, fracturing, and production challenges of the Haynesville Shale-gas play. Basement structures and salt movement influenced carbonate and siliciclastic sedimentation associated with the opening of the Gulf of Mexico. The Haynesville Shale is an organic- and carbonate-rich mudrock that was deposited in a deep partly euxinic and anoxic basin during the Kimmeridgian to the early Tithonian, related to a second-order transgression that deposited organic-rich black Shales worldwide. The Haynesville Basin was surrounded by carbonate shelves of the Smackover and Haynesville lime Louark sequence in the north and west. Several rivers supplied sand and mud from the northwest, north, and northeast into the basin. Haynesville mudrocks contain a spectrum of facies ranging from bioturbated calcareous mudstone, laminated calcareous mudstone, and silty peloidal siliceous mudstone, to unlaminated siliceous organic-rich mudstone. Framboidal to colloidal pyrite is variably present in the form of concretions, laminae, and individual framboids and replaces calcite cement and mollusk shells. Haynesville reservoirs are characterized by overpressuring, porosity averaging 8 to 12%, Sw of 20 to 30%, nanodarcy permeabilities, reservoir thickness of 200 to 300 ft (70 to100 m), and initial production of as much as 30 mmcf/day. Reservoir depth ranges from 9000 to 14,000 ft (3000 to 4700 m), and lateral drilling distances are 3000 to 5000 ft (1000 to 1700 m). Typical Haynesville wells exhibit a steeper decline curve (80% in the first year) than other Shale-gas plays, which is attributed to a very high overpressure.

Janos Urai - One of the best experts on this subject based on the ideXlab platform.

  • the connectivity of pore space in mudstones insights from high pressure wood s metal injection bib sem imaging and mercury intrusion porosimetry
    Geofluids, 2015
    Co-Authors: Jop Klaver, Susanne Hemes, M E Houben, Guillaume Desbois, Z Radi, Janos Urai
    Abstract:

    Study of the pore space in mudstones by mercury intrusion porosimetry is a common but indirect technique and it is not clear which part of the pore space is actually filled with mercury. We studied samples from the Opalinus Clay, Boom Clay, Haynesville Shale, and Bossier Shale Formations using Wood’s metal injection at 316 MPa, followed by novel ion beam polishing and high-resolution scanning electron microscopy. This method allowed us to analyze at high resolution which parts of a rock are intruded by the liquid alloy at mm to cm scale. Results from the Opalinus Clay and Haynesville Shale show Wood’s Metal in cracks, but the majority of the pore space is not filled although mercury intrusion data suggests that this is the case. In the silt-rich Boom Clay sample, the majority of the pore space was filled Wood’s metal, with unfilled islands of smaller pores. Bossier Shale shows heterogeneous impregnation with local filling of pores as small as 10 nm. We infer that mercury intrusion data from these samples is partly due to crack filling and compression of the sample. This compaction is caused by effective stress developed by mercury pressure and capillary resistance; it can close small pore throats, prevent injection of the liquid metal, and indicate an apparent porosity. Our results suggest that many published MIP data on mudstones could contain serious artifacts and reliable metal intrusion porosimetry requires a demonstration that the metal has entered the pores, for example by Wood’s metal injection, broad ion beam polishing, and scanning electron microscopy.

  • bib sem characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and bossier Shales
    Marine and Petroleum Geology, 2015
    Co-Authors: Jop Klaver, Guillaume Desbois, Ralf Littke, Janos Urai
    Abstract:

    Abstract Four Haynesville Shale and four Bossier Shale samples were investigated using a combination of Scanning Electron Microscopy (SEM) and Broad Ion Beam (BIB) polishing. This approach enables the microstructure and porosity to be studied down to the mesopore size (

  • bib sem characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and bossier Shales
    Marine and Petroleum Geology, 2015
    Co-Authors: Jop Klaver, Guillaume Desbois, Ralf Littke, Janos Urai
    Abstract:

    Abstract Four Haynesville Shale and four Bossier Shale samples were investigated using a combination of Scanning Electron Microscopy (SEM) and Broad Ion Beam (BIB) polishing. This approach enables the microstructure and porosity to be studied down to the mesopore size ( r in the Haynesville Shale to 1.79–2.26 VR r in the Bossier Shale. This variety within the samples enabled us to study controls on the porosity distribution in these Shales. Visible pores exist as intraparticle pores mainly in carbonate grains and pyrite framboids and as interparticle pores, mainly in the clay-rich matrix. Pores in organic matter show a characteristic porosity with respect to the type of organic matter, which mainly consists of mixtures of amorphous organic matter and minerals, organic laminae and discrete macerals. A clear positive trend of organic-matter porosity with maturity was found. Pore sizes are power law distributed in the range of 4.4 μm to at least 36 nm in equivalent diameter. The differences in power law exponents suggest that a more grain supported, coarse-grained matrix may prevent pores from mechanical compaction. Porosities measured in the BIB cross-sections were significantly lower in comparison to porosities obtained by Mercury Intrusion Porosimetry (MIP). This difference is mainly attributed to the different resolution achieved with BIB-SEM and MIP and type of pore network. Extrapolation of pore size distributions (PSDs) enables the BIB-SEM porosity to be estimated down to the resolution of the MIP and thus to upscale microstructural observation at the confined space of the BIB-SEM method to bulk porosity measurement. These inferred porosities are in good agreement with the MIP determined porosities, which underpins the assumption that pores segmented in BIB-SEM mosaics are representative of the MIP methodology.

D D Parrish - One of the best experts on this subject based on the ideXlab platform.

  • instrumentation and measurement strategy for the noaa senex aircraft campaign as part of the southeast atmosphere study 2013
    Atmospheric Measurement Techniques, 2016
    Co-Authors: C Warneke, M Trainer, Joost A De Gouw, D D Parrish, D W Fahey, A R Ravishankara
    Abstract:

    Abstract. Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  • Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013
    Copernicus Publications, 2016
    Co-Authors: C Warneke, J A De Gouw, M Trainer, D D Parrish, D W Fahey, A R Ravishankara, A. M. Middlebrook, C. A. Brock, J. M. Roberts, S. S. Brown
    Abstract:

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense Shale gas extraction (Marcellus, Fayetteville and Haynesville Shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions