HD Domain

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 7044 Experts worldwide ranked by ideXlab platform

Xiao Fang Yu - One of the best experts on this subject based on the ideXlab platform.

  • Research Progress in Viral Protein Vpx induction of Proteasomal Degradation of the Antiviral Factor SAMHD1
    Chinese journal of virology, 2016
    Co-Authors: Juan Du, Ke Zhao, Xiao Fang Yu
    Abstract:

    HIV the pathogen responsible for the transmission of AIDS, which is associated with a high mortality rate. Vpx is expressed in HIV-2/SIV and promotes retroviral infection in specific cells. This promotion is achieved by Vpx-induced formation of the CRL4E3 complex, which removes the endogenous SAMHD1 via proteasomal degradation. Multiple Domains of SAMHD1(e.g., N-terminus, nuclear localization signal, linker, HD Domain, and C-terminus)are essential for Vpx-induced degradation.HIV-1that does not express Vpx is also evolved with mechanisms to bypass or suppress the antiviral function of SAMHD1,such as the tolerance against a low level of dNTPs and induction of SAMHD1 degradation through cyclin L2.Based on previous reports published chronologically, as well as the latest findings in the field, this review focuses on the mechanism of Vpx-mediated degradation of SAMHD1,and its promotion of HIV-1infection.

  • HD Domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step.
    Biochemical and Biophysical Research Communications, 2016
    Co-Authors: Jian Kang, Xiao Fang Yu, Ke Zhao, Juan Du
    Abstract:

    Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1GG) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1HS). Results regarding to SAMHD1HS and SAMHD1GG fusion proteins supported previous findings that the C-terminus of SAMHD1HS is essential for Vpx-induced degradation. Internal Domain substitution, however, revealed that the HD Domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD Domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation.

  • variation of two primate lineage specific residues in human samHD1 confers resistance to n terminus targeted siv vpx proteins
    Journal of Virology, 2014
    Co-Authors: Richard B. Markham, Xiao Fang Yu
    Abstract:

    Sterile alpha motif and HD Domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection in myeloid cells but is inactivated by certain classes of simian immunodeficiency virus (SIV) Vpx proteins. Vpx proteins recruit the DCAF1-CRL4 E3 ubiquitin ligase to trigger species-specific SAMHD1 degradation. Determinants of SIV Vpx-mediated primate SAMHD1 degradation have been mapped to its C terminus. In this study, we have identified the N terminus of human SAMHD1 as a major species-specific determinant of Vpx-mediated suppression. The SIVmnd2 and SIVrcm Vpx proteins recognize the N terminus of rhesus, but not human, SAMHD1. We have also demonstrated that variation of two primate lineage-specific residues between human and rhesus SAMHD1 proteins determine resistance to SIVmnd2 and SIVrcm Vpx proteins. These residues (Cys15 and Ser52) are sequentially mutated to Phe in different lineages of Old World monkeys. Consequently, SIVmnd2 and SIVrcm Vpx proteins that could recognize Phe15- and Phe52-containing SAMHD1 could not inactivate human SAMHD1, which contains Cys15 and Ser52. In contrast, SIVmac Vpx, which targets the C terminus of SAMHD1 molecules, could inactivate various primate SAMHD1 molecules with divergent C-terminal sequences. Both C terminus-targeted SIVmac Vpx and N terminus-targeted SIVrcm Vpx require DCAF1 for the induction of SAMHD1 degradation. The ability of SIV Vpx to restrict SAMHD1 among different primate species is a manifestation of the SAMHD1 evolutionary pattern among those species.

  • identification of critical regions in human samHD1 required for nuclear localization and vpx mediated degradation
    PLOS ONE, 2013
    Co-Authors: Sean L Evans, Jian Ying Zhou, Xiao Fang Yu, Weiming Yang, Ke Zhao, Hong Wang
    Abstract:

    The sterile alpha motif (SAM) and HD Domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-β1 and other nuclear proteins. We also determined that the linker region between the SAM and HD Domain and the HD Domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-mediated degradation of SAMHD1. Since the linker region and HD Domain may be involved in SAMHD1 multimerization, our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.

Silvia Dibenedetto - One of the best experts on this subject based on the ideXlab platform.

  • calcineurin a versus ns5a tp2 HD Domain containing 2 a case study of site directed low frequency random mutagenesis for dissecting target specificity of peptide aptamers
    Molecular & Cellular Proteomics, 2013
    Co-Authors: Silvia Dibenedetto, David Cluet, Pierre-nicolas Stebe, Véronique Baumlé, Jérémie Léault, Benoit De Chassey, Marc Bickle, Raphaël Terreux, Ivan Mikaelian
    Abstract:

    We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as “bait,” allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD Domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.

  • Calcineurin A versus NS5A-TP2/HD Domain Containing 2: A Case Study of Site-directed Low-frequency Random Mutagenesis for Dissecting Target Specificity of Peptide Aptamers
    Molecular & Cellular Proteomics, 2013
    Co-Authors: Silvia Dibenedetto, David Cluet, Pierre-nicolas Stebe, Véronique Baumlé, Jérémie Léault, Ivan Mikaelian, Benoit De Chassey, Marc Bickle, Raphaël Terreux, Pierre Colas
    Abstract:

    We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as “bait,” allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD Domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.

Jacek Skowronski - One of the best experts on this subject based on the ideXlab platform.

  • hiv simian immunodeficiency virus siv accessory virulence factor vpx loads the host cell restriction factor samHD1 onto the e3 ubiquitin ligase complex crl4dcaf1
    Journal of Biological Chemistry, 2012
    Co-Authors: Maria Delucia, Chuanping Wang, Jennifer Mehrens, Angela M. Gronenborn, Jacek Skowronski
    Abstract:

    The sterile alpha motif and HD Domain-containing protein-1 (SAMHD1) inhibits infection of myeloid cells by human and related primate immunodeficiency viruses (HIV and SIV). This potent inhibition is counteracted by the Vpx accessory virulence factor of HIV-2/SIVsm viruses, which targets SAMHD1 for proteasome-dependent degradation, by reprogramming cellular CRL4(DCAF1) E3 ubiquitin ligase. However, the precise mechanism of Vpx-dependent recruitment of human SAMHD1 onto the ligase, and the molecular interfaces on the respective molecules have not been defined. Here, we show that human SAMHD1 is recruited to the CRL4(DCAF1-Vpx) E3 ubiquitin ligase complex by interacting with the DCAF1 substrate receptor subunit in a Vpx-dependent manner. No stable association is detectable with DCAF1 alone. The SAMHD1 determinant for the interaction is a short peptide located distal to the SAMHD1 catalytic Domain and requires the presence of Vpx for stable engagement. This peptide is sufficient to confer Vpx-dependent recruitment to CRL4(DCAF1) and ubiquitination when fused to heterologous proteins. The precise amino acid sequence of the peptide diverges among SAMHD1 proteins from different vertebrate species, explaining selective down-regulation of human SAMHD1 levels by Vpx. Critical amino acid residues of SAMHD1 and Vpx involved in the DCAF1-Vpx-SAMDH1 interaction were identified by mutagenesis. Our findings show that the N terminus of Vpx, bound to DCAF1, recruits SAMHD1 via its C terminus to CRL4, in a species-specific manner for proteasomal degradation.

  • vpx relieves inhibition of hiv 1 infection of macrophages mediated by the samHD1 protein
    Nature, 2011
    Co-Authors: Kasia Hrecka, Jacek Skowronski, Magda Gierszewska, Selene K Swanson, Malgorzata Kesikbrodacka, Smita Srivastava, Laurence Florens, Michael P Washburn
    Abstract:

    HIV-1 is unable to replicate efficiently in dendritic cells, the antigen-presenting tissue cells that function in both innate and adaptive immunity. Other primate lentiviruses, including HIV-2 and some simian immunodeficiency viruses, express a protein called Vpx that is able to overcome the block to replication. Two groups now report the identification of the restriction factor in dendritic cells and macrophages that is overcome by Vpx. Vpx is found to induce degradation of the protein SAMHD1. Mutations in SAMHD1 cause Aicardi–Goutieres syndrome, a disorder characterized by inappropriate activation of the immune system. Knockdown of SAMHD1 increases HIV-1 replication in dendritic cells, which could be important for generating appropriate immune responses to the virus. Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses1,2. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA3,4. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism5,6. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM Domain HD Domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi–Goutieres syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection7,8. Failure to dispose of endogenous nucleic acid debris in Aicardi–Goutieres syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors9,10. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.

  • Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein
    Nature, 2011
    Co-Authors: Kasia Hrecka, Magda Gierszewska, Selene K Swanson, Smita Srivastava, Laurence Florens, Michael P Washburn, Caili Hao, Malgorzata Kesik-brodacka, Jacek Skowronski
    Abstract:

    HIV-1 is unable to replicate efficiently in dendritic cells, the antigen-presenting tissue cells that function in both innate and adaptive immunity. Other primate lentiviruses, including HIV-2 and some simian immunodeficiency viruses, express a protein called Vpx that is able to overcome the block to replication. Two groups now report the identification of the restriction factor in dendritic cells and macrophages that is overcome by Vpx. Vpx is found to induce degradation of the protein SAMHD1. Mutations in SAMHD1 cause Aicardi–Goutières syndrome, a disorder characterized by inappropriate activation of the immune system. Knockdown of SAMHD1 increases HIV-1 replication in dendritic cells, which could be important for generating appropriate immune responses to the virus. Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses^ 1 , 2 . Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA^ 3 , 4 . In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism^ 5 , 6 . Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM Domain HD Domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4^DCAF1 E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi–Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection^ 7 , 8 . Failure to dispose of endogenous nucleic acid debris in Aicardi–Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors^ 9 , 10 . Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.

Ivan Mikaelian - One of the best experts on this subject based on the ideXlab platform.

  • calcineurin a versus ns5a tp2 HD Domain containing 2 a case study of site directed low frequency random mutagenesis for dissecting target specificity of peptide aptamers
    Molecular & Cellular Proteomics, 2013
    Co-Authors: Silvia Dibenedetto, David Cluet, Pierre-nicolas Stebe, Véronique Baumlé, Jérémie Léault, Benoit De Chassey, Marc Bickle, Raphaël Terreux, Ivan Mikaelian
    Abstract:

    We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as “bait,” allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD Domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.

  • Calcineurin A versus NS5A-TP2/HD Domain Containing 2: A Case Study of Site-directed Low-frequency Random Mutagenesis for Dissecting Target Specificity of Peptide Aptamers
    Molecular & Cellular Proteomics, 2013
    Co-Authors: Silvia Dibenedetto, David Cluet, Pierre-nicolas Stebe, Véronique Baumlé, Jérémie Léault, Ivan Mikaelian, Benoit De Chassey, Marc Bickle, Raphaël Terreux, Pierre Colas
    Abstract:

    We previously identified a peptide aptamer (named R5G42) via functional selection for its capacity to slow cell proliferation. A yeast two-hybrid screen of human cDNA libraries, using R5G42 as “bait,” allowed the identification of two binding proteins with very different functions: calcineurin A (CnA) (PP2B/PPP3CA), a protein phosphatase well characterized for its role in the immune response, and NS5A-TP2/HD Domain containing 2, a much less studied protein induced subsequent to hepatitis C virus non-structural protein 5A expression in HepG2 hepatocellular carcinoma cells, with no known activity. Our objective in the present study was to dissect the dual target specificity of R5G42 in order to have tools with which to better characterize the actions of the peptide aptamers toward their individual targets. This was achieved through the selection of random mutants of the variable loop, derived from R5G42, evaluating their specificity toward CnA and NS5A-TP2 and analyzing their sequence. An interdisciplinary approach involving biomolecular computer simulations with integration of the sequence data and yeast two-hybrid binding phenotypes of these mutants yielded two structurally distinct conformers affording the potential molecular basis of the binding diversity of R5G42. Evaluation of the biological impact of CnA- versus NS5A-TP2-specific peptide aptamers indicated that although both contributed to the anti-proliferative effect of R5G42, CnA-binding was essential to stimulate the nuclear translocation of nuclear factor of activated T cells, indicative of the activation of endogenous CnA. By dissecting the target specificity of R5G42, we have generated novel tools with which to study each target individually. Apta-C8 is capable of directly activating CnA independent of binding to NS5A-TP2 and will be an important tool in studying the role of CnA activation in the regulation of different signaling pathways, whereas Apta-E1 will allow dissection of the function of NS5A-TP2, serving as an example of the usefulness of peptide aptamer technology for investigating signaling pathways.

Ke Zhao - One of the best experts on this subject based on the ideXlab platform.

  • Identification of Critical Regions in Human SAMHD1 Required for Nuclear Localization and Vpx-Mediated Degradation
    2016
    Co-Authors: Haoran Guo, Sean L Evans, Weiming Yang, Ke Zhao, Hong Wang, Wei Wei, Zhenhong Wei, Xianjun Liu, Ying Guo, Jian Ying Zhou
    Abstract:

    The sterile alpha motif (SAM) and HD Domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-b1 and other nuclear proteins. We also determined that the linker region between the SAM and HD Domain and the HD Domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx

  • Research Progress in Viral Protein Vpx induction of Proteasomal Degradation of the Antiviral Factor SAMHD1
    Chinese journal of virology, 2016
    Co-Authors: Juan Du, Ke Zhao, Xiao Fang Yu
    Abstract:

    HIV the pathogen responsible for the transmission of AIDS, which is associated with a high mortality rate. Vpx is expressed in HIV-2/SIV and promotes retroviral infection in specific cells. This promotion is achieved by Vpx-induced formation of the CRL4E3 complex, which removes the endogenous SAMHD1 via proteasomal degradation. Multiple Domains of SAMHD1(e.g., N-terminus, nuclear localization signal, linker, HD Domain, and C-terminus)are essential for Vpx-induced degradation.HIV-1that does not express Vpx is also evolved with mechanisms to bypass or suppress the antiviral function of SAMHD1,such as the tolerance against a low level of dNTPs and induction of SAMHD1 degradation through cyclin L2.Based on previous reports published chronologically, as well as the latest findings in the field, this review focuses on the mechanism of Vpx-mediated degradation of SAMHD1,and its promotion of HIV-1infection.

  • HD Domain of SAMHD1 influences Vpx-induced degradation at a post-interaction step.
    Biochemical and Biophysical Research Communications, 2016
    Co-Authors: Jian Kang, Xiao Fang Yu, Ke Zhao, Juan Du
    Abstract:

    Primate SAMHD1 proteins are potent inhibitors of viruses, including retroviruses such as HIV-1, HIV-2, and SIV. Vpx, a distinctive viral protein expressed by HIV-2 and some SIVs, induces SAMHD1 degradation by forming a Vpx-DCAF1-based ubiquitin ligase complex. Either the N- or the C-terminus of SAMHD1 is critical for Vpx-induced degradation, depending on the types of SAMHD1 and Vpx proteins. However, it was not fully understood whether other regions of SAMHD1 also contribute to its depletion by Vpx. In the present study, we report that SAMHD1 from chicken (SAMHD1GG) was not degraded by SIVmac Vpx, in contrast with results for human SAMHD1 (SAMHD1HS). Results regarding to SAMHD1HS and SAMHD1GG fusion proteins supported previous findings that the C-terminus of SAMHD1HS is essential for Vpx-induced degradation. Internal Domain substitution, however, revealed that the HD Domain also contributes to Vpx-mediated SAMHD1 degradation. Interestingly, the HD Domain influenced Vpx-mediated SAMHD1 degradation without affecting Vpx-SAMHD1 interaction. Therefore, our findings revealed that factors in addition to Vpx-SAMHD1 binding influence the efficiency of Vpx-mediated SAMHD1 degradation.

  • identification of critical regions in human samHD1 required for nuclear localization and vpx mediated degradation
    PLOS ONE, 2013
    Co-Authors: Sean L Evans, Jian Ying Zhou, Xiao Fang Yu, Weiming Yang, Ke Zhao, Hong Wang
    Abstract:

    The sterile alpha motif (SAM) and HD Domain-containing protein-1 (SAMHD1) inhibits the infection of resting CD4+ T cells and myeloid cells by human and related simian immunodeficiency viruses (HIV and SIV). Vpx inactivates SAMHD1 by promoting its proteasome-dependent degradation through an interaction with CRL4 (DCAF1) E3 ubiquitin ligase and the C-terminal region of SAMHD1. However, the determinants in SAMHD1 that are required for Vpx-mediated degradation have not been well characterized. SAMHD1 contains a classical nuclear localization signal (NLS), and NLS point mutants are cytoplasmic and resistant to Vpx-mediated degradation. Here, we demonstrate that NLS-mutant SAMHD1 K11A can be rescued by wild-type SAMHD1, restoring its nuclear localization; consequently, SAMHD1 K11A became sensitive to Vpx-mediated degradation in the presence of wild-type SAMHD1. Surprisingly, deletion of N-terminal regions of SAMHD1, including the classical NLS, generated mutant SAMHD1 proteins that were again sensitive to Vpx-mediated degradation. Unlike SAMHD1 K11A, these deletion mutants could be detected in the nucleus. Interestingly, NLS-defective SAMHD1 could still bind to karyopherin-β1 and other nuclear proteins. We also determined that the linker region between the SAM and HD Domain and the HD Domain itself is important for Vpx-mediated degradation but not Vpx interaction. Thus, SAMHD1 contains an additional nuclear targeting mechanism in addition to the classical NLS. Our data indicate that multiple regions in SAMHD1 are critical for Vpx-mediated nuclear degradation and that association with Vpx is not sufficient for Vpx-mediated degradation of SAMHD1. Since the linker region and HD Domain may be involved in SAMHD1 multimerization, our results suggest that SAMHD1 multimerization may be required for Vpx-mediation degradation.