Hericium

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 360 Experts worldwide ranked by ideXlab platform

Youngji Shiao - One of the best experts on this subject based on the ideXlab platform.

  • the cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate alzheimer s disease related pathologies in app ps1 transgenic mice
    International Journal of Molecular Sciences, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  • The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice
    MDPI AG, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use

  • erinacine a enriched Hericium erinaceus mycelium ameliorates alzheimer s disease related pathologies in appswe ps1de9 transgenic mice
    Journal of Biomedical Science, 2016
    Co-Authors: Tzeng Tsaiteng, Chen Chinchu, Lee Liya, Chen Wanping, Lu Chungkuang, Shen Chienchang, Huang F Chiying, Chen Chienchih, Youngji Shiao
    Abstract:

    Background The fruiting body of Hericium erinaceus has been demonstrated to possess anti-dementia activity in mouse model of Alzheimer’s disease and people with mild cognitive impairment. However, the therapeutic potential of Hericium erinaceus mycelia on Alzheimer’s disease remains unclear. In this study, the effects of erinacine A-enriched Hericium erinaceus mycelia (HE-My) on the pathological changes in APPswe/PS1dE9 transgenic mouse model of Alzheimer’s disease are studied.

  • erinacine s a rare sesterterpene from the mycelia of Hericium erinaceus
    Journal of Natural Products, 2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex.

  • Erinacine S, a Rare Sesterterpene from the Mycelia of Hericium erinaceus
    2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex

Chin-chu Chen - One of the best experts on this subject based on the ideXlab platform.

  • Absolute Bioavailability, Tissue Distribution, and Excretion of Erinacine S in Hericium erinaceus Mycelia
    MDPI AG, 2019
    Co-Authors: Ting-wei Lin, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chia-feng Kuo
    Abstract:

    Erinacine S, so far known to have been produced only in Hericium erinaceus mycelia, has just recently been discovered and is able to reduce amyloid plaque growth and improve neurogenesis in aged brain of rats. However, few investigations have been conducted on the absorption, distribution, and excretion study of Erinacine S. This study aimed to investigate the absolute bioavailability, tissue distribution, and excretion of Erinacine S in H. Erinaceus mycelia in eight-week old Sprague-Dawley rats. After oral administration and intravenous administration of 2.395 g/kg body weight of the H. erinaceus mycelia extract (equivalent to 50 mg/kg body weight Erinacine S) and 5 mg/kg of Erinacine S, respectively, the absolute bioavailability was estimated as 15.13%. In addition, Erinacine S was extensively distributed in organs such as brain, heart, lung, liver, kidney, stomach, small intestine, and large intestine. The maximum concentration of Erinacine S was observed in the stomach, 2 h after the oral administration of H. erinaceus mycelia extract, whereas the maximum amount of Erinacine S found in other tissues were seen after 8 h. Total amount of unconverted Erinacine S eliminated in feces and urine in 24 h was 0.1% of the oral dosage administrated. This study is the first to show that Erinacine S can penetrate the blood–brain barrier of rats and thus support the development of H. erinaceus mycelia, for the treatment of neurological diseases

  • the cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate alzheimer s disease related pathologies in app ps1 transgenic mice
    International Journal of Molecular Sciences, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  • The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice
    MDPI AG, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use

  • Hericium erinaceus mycelium and its isolated erinacine a protection from mptp induced neurotoxicity through the er stress triggering an apoptosis cascade
    Journal of Translational Medicine, 2016
    Co-Authors: Hsingchun Kuo, Chin-chu Chen, Chihchuan Teng, Chienheng Shen, Mengchiao Hsieh, Kochao Lee, Liya Lee, Wenshih Huang, Shuiyi Tung, Techuan Chen
    Abstract:

    Background Hericium erinaceus is an edible mushroom; its various pharmacological effects which have been investigated. This study aimed to demonstrate whether efficacy of oral administration of H. erinaceus mycelium (HEM) and its isolated diterpenoid derivative, erinacine A, can act as an anti-neuroinflammatory agent to bring about neuroprotection using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease, which results in motor disturbances, in addition to elucidating the mechanisms involved.

  • erinacine s a rare sesterterpene from the mycelia of Hericium erinaceus
    Journal of Natural Products, 2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex.

Liya Lee - One of the best experts on this subject based on the ideXlab platform.

  • Absolute Bioavailability, Tissue Distribution, and Excretion of Erinacine S in Hericium erinaceus Mycelia
    MDPI AG, 2019
    Co-Authors: Ting-wei Lin, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chia-feng Kuo
    Abstract:

    Erinacine S, so far known to have been produced only in Hericium erinaceus mycelia, has just recently been discovered and is able to reduce amyloid plaque growth and improve neurogenesis in aged brain of rats. However, few investigations have been conducted on the absorption, distribution, and excretion study of Erinacine S. This study aimed to investigate the absolute bioavailability, tissue distribution, and excretion of Erinacine S in H. Erinaceus mycelia in eight-week old Sprague-Dawley rats. After oral administration and intravenous administration of 2.395 g/kg body weight of the H. erinaceus mycelia extract (equivalent to 50 mg/kg body weight Erinacine S) and 5 mg/kg of Erinacine S, respectively, the absolute bioavailability was estimated as 15.13%. In addition, Erinacine S was extensively distributed in organs such as brain, heart, lung, liver, kidney, stomach, small intestine, and large intestine. The maximum concentration of Erinacine S was observed in the stomach, 2 h after the oral administration of H. erinaceus mycelia extract, whereas the maximum amount of Erinacine S found in other tissues were seen after 8 h. Total amount of unconverted Erinacine S eliminated in feces and urine in 24 h was 0.1% of the oral dosage administrated. This study is the first to show that Erinacine S can penetrate the blood–brain barrier of rats and thus support the development of H. erinaceus mycelia, for the treatment of neurological diseases

  • the cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate alzheimer s disease related pathologies in app ps1 transgenic mice
    International Journal of Molecular Sciences, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  • The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice
    MDPI AG, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use

  • Hericium erinaceus mycelium and its isolated erinacine a protection from mptp induced neurotoxicity through the er stress triggering an apoptosis cascade
    Journal of Translational Medicine, 2016
    Co-Authors: Hsingchun Kuo, Chin-chu Chen, Chihchuan Teng, Chienheng Shen, Mengchiao Hsieh, Kochao Lee, Liya Lee, Wenshih Huang, Shuiyi Tung, Techuan Chen
    Abstract:

    Background Hericium erinaceus is an edible mushroom; its various pharmacological effects which have been investigated. This study aimed to demonstrate whether efficacy of oral administration of H. erinaceus mycelium (HEM) and its isolated diterpenoid derivative, erinacine A, can act as an anti-neuroinflammatory agent to bring about neuroprotection using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease, which results in motor disturbances, in addition to elucidating the mechanisms involved.

  • erinacine s a rare sesterterpene from the mycelia of Hericium erinaceus
    Journal of Natural Products, 2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex.

Wan-ping Chen - One of the best experts on this subject based on the ideXlab platform.

  • Absolute Bioavailability, Tissue Distribution, and Excretion of Erinacine S in Hericium erinaceus Mycelia
    MDPI AG, 2019
    Co-Authors: Ting-wei Lin, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chia-feng Kuo
    Abstract:

    Erinacine S, so far known to have been produced only in Hericium erinaceus mycelia, has just recently been discovered and is able to reduce amyloid plaque growth and improve neurogenesis in aged brain of rats. However, few investigations have been conducted on the absorption, distribution, and excretion study of Erinacine S. This study aimed to investigate the absolute bioavailability, tissue distribution, and excretion of Erinacine S in H. Erinaceus mycelia in eight-week old Sprague-Dawley rats. After oral administration and intravenous administration of 2.395 g/kg body weight of the H. erinaceus mycelia extract (equivalent to 50 mg/kg body weight Erinacine S) and 5 mg/kg of Erinacine S, respectively, the absolute bioavailability was estimated as 15.13%. In addition, Erinacine S was extensively distributed in organs such as brain, heart, lung, liver, kidney, stomach, small intestine, and large intestine. The maximum concentration of Erinacine S was observed in the stomach, 2 h after the oral administration of H. erinaceus mycelia extract, whereas the maximum amount of Erinacine S found in other tissues were seen after 8 h. Total amount of unconverted Erinacine S eliminated in feces and urine in 24 h was 0.1% of the oral dosage administrated. This study is the first to show that Erinacine S can penetrate the blood–brain barrier of rats and thus support the development of H. erinaceus mycelia, for the treatment of neurological diseases

  • the cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate alzheimer s disease related pathologies in app ps1 transgenic mice
    International Journal of Molecular Sciences, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  • The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice
    MDPI AG, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use

  • erinacine s a rare sesterterpene from the mycelia of Hericium erinaceus
    Journal of Natural Products, 2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex.

  • Erinacine S, a Rare Sesterterpene from the Mycelia of Hericium erinaceus
    2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex

Chien-chang Shen - One of the best experts on this subject based on the ideXlab platform.

  • the cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate alzheimer s disease related pathologies in app ps1 transgenic mice
    International Journal of Molecular Sciences, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.

  • The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice
    MDPI AG, 2018
    Co-Authors: Tsai-teng Tzeng, Chin-chu Chen, Wan-ping Chen, Liya Lee, Chien-chih Chen, Chien-chang Shen, Huey-jen Tsay, Youngji Shiao
    Abstract:

    Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use

  • erinacine s a rare sesterterpene from the mycelia of Hericium erinaceus
    Journal of Natural Products, 2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex.

  • Erinacine S, a Rare Sesterterpene from the Mycelia of Hericium erinaceus
    2016
    Co-Authors: Chien-chih Chen, Chin-chu Chen, Wan-ping Chen, Liya Lee, Youngji Shiao, Tsai-teng Tzeng, Chien-chang Shen
    Abstract:

    A new sesterterpene, erinacine S, and one cyathane diterpene xyloside, erinacine A, were isolated from the ethanol extract of the mycelia of Hericium erinaceus. Their structures were elucidated by spectroscopic and X-ray analysis. A 30-day oral course of erinacines A and S attenuated Aβ plaque burden in the brains of 5-month-old female APP/PS1 transgenic mice. Moreover, erinacines A and S significantly increased the level of insulin-degrading enzyme in cerebral cortex