Humeroradial Joint

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 81 Experts worldwide ranked by ideXlab platform

Casanova Canals Xavier - One of the best experts on this subject based on the ideXlab platform.

  • Descripción de un modelo biomecánico en especímenes cadavéricos para el estudio de las presiones intra-articulares del codo en posición funcional estática : 90º de flexión y pronosupinación neutra
    2020, 2020
    Co-Authors: Casanova Canals Xavier
    Abstract:

    La la majoria de les activitats manuals diàries es realitzen amb l'articulació del colze en la posició de flexió. En aquest sentit, és important comprendre com participen en la distribució de la pressió articular els músculs que tenen l'origen i la inserció anatòmica al voltant del colze i que son els responsables tan de la seva posició com de la mobilitat del canell i dels dits de la mà. Molts estudis biomecànics previs han publicat la distribució de les pressions intra-articulars del colze (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) en la posició d'extensió (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) però considerant només l'articulació humero-radial (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017). D'altra banda, els estudis biomecànics del colze que han considerat l'articulació humero-cubital (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) son difícils de comparar perquè existeixen moltes diferències entre les metodologies utilitzades (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). L'objectiu d'aquest estudi ha sigut avaluar les pressions articulars del colze mitjançant un sistema que reprodueix experimentalment l'efecte de la contracció muscular amb la càrrega de diferents pesos en la posició de flexió del colze a 90º. S'han dissecat anatòmicament deu extremitats superiors criopreservades mantenint intactes les insercions tendinoses i els teixits capsulolligamentosos periarticulars. Els espècimens han estat col·locats en un aparell dissenyat específicament per a la seva subjecció en la posició de 90º de flexió del colze, pronosupinació neutra de l'avantbraç i extensió del canell a 0º. Les pressions intrarticulares han estat mesurades amb els sensors Tekscan® B-201. S'ha enregistrat la pressió articular en els 6 compartiments articulars del colze i s'han determinat els canvis de pressió en cada un d'ells depenent dels moments de força generats per la càrrega dels tendons. En absència de càrrega dels tendons, el compartiment humero-radial ha sigut el que menys pressió ha enregistrat, mentre que el compartiment humero-cubital anterolateral ha sigut el que ha estat sotmès a una pressió més elevada. Després de la càrrega dels tendons del grup muscular epitroclear fins a un màxim de 5kg, la pressió articular a l'articulació humero-cubital ha augmentat al compartiment anteromedial (0,6 kg a 3,3kg) i ha disminuït als compartiments posteromedials i anterolateral (4,2kg a 0,3kg i 4,2kg a 0.9kg, respectivament). Després de la mateix procés de càrrega dels tendons del grup muscular epicondilar, la pressió articular ha augmentat als compartiments humero-cubital anterolateral i humero-radial (4,2kg a 8,2kg i 0,2 a 1kg respectivament), però ha disminuït al compartiment humero-cubital posterolateral (3,4kg a 1,0 kg). Conèixer el patró de distribució de la pressió articular generat per cada múscul pot ser de gran utilitat a l'hora d'establir futurs protocols clínics i terapèutics que tinguin per objectiu modificar les càrregues de pressió sobre compartiments articulars humero-cubitals i/o humero-radials específics, com per exemple en el context de patologies articular posttraumàtica del colze que requereixen la implantació de pròtesis del cap del radi o d'una pròtesis total del colze.La mayoría de las actividades manuales diarias se realizan con la articulación del codo en una posición de flexión. En este sentido, es importante comprender como participan en la distribución de la presión articularlos músculos que tienen su origen e inserción anatómica alrededor del codo y que son los responsables tanto de su posición como de la movilidad de la muñeca y la mano. Muchos estudios biomecánicos previos han publicado la distribución de las presiones intra-articulares del codo (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) en la posición de extensión (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) pero considerando únicamente la articulación humero-radial (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017). Otros estudios biomecánicos del codo que han considerado la articulación humero-cubital (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) son de difícil comparación porque existen muchas diferencias entre las metodologías utilizadas (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). El objetivo de este estudio ha sido determinar las presiones articulares del codo mediante un sistema que reproduce experimentalmente el efecto de la contracción muscular con la carga de múltiples pesos en la posición de flexión del codo a 90º. Se han disecado anatómicamente diez extremidades superiores criopreservadas manteniendo intactas las inserciones tendinosas y los tejidos capsuloligamentosos periarticulares. Los especímenes se han colocado en un dispositivo diseñado específicamente para su sujeción en la posición de 90º de flexión del codo, pronosupinación neutra del antebrazo y extensión de muñeca a 0º. Las presiones intra-articulares se han medido con los sensores Tekscan® B-201. Se ha registrado la presión articular en los seis compartimentos articulares del codo y se han determinado los cambios de presión en cada uno de ellos dependiendo de los momentos de fuerza generados por la carga de los tendones. En ausencia de carga de los tendones, el compartimento humero-radial ha sido el que menos presión ha registrado, mientras que el compartimento humero-cubital anterolateral ha sido el ha estado sometido a una presión más elevada. Tras la carga de los tendones del grupo muscular epitroclear hasta un máximo de 5kg, la presión articular en la articulación humero-cubital ha incrementado en el compartimento anteromedial (0,6 kg a 3,3kg) y ha disminuido en los compartimentos posteromediales y anterolateral (4,2kg a 0,3kg y 4,2kg a 0.9kg, respectivamente). Tras el mismo proceso de carga de los tendones del grupo muscular epicondilar, la presión articular ha aumentado en los compartimentos humero-cubital anterolateral y humero-radial (4,2kg a 8,2kg y 0,2 a 1kg respectivament), però ha disminuido en el compartimento humero-cubital posterolateral (3,4kg a 1,0 kg). Conocer el patrón de distribución de la presión articular generado por cada músculo puede ser de gran ayuda a la hora de establecer futuros protocolos clínicos y terapéuticos que tengan por objectivo modificar las cargas de presión sobre compartimentos humero-radiales y/o humero-cubitales específicos, como por ejemplo, en el contexto de patologías articulares postraumàticas del codo que requieren la implantación de una prótesis de la cabeza del radio o de una prótesis total de codo.Elbow flexion is useful for sufficient elbow function and hand movement during daily activities. In this sense, it is important to understand the effects of the muscles that cross these Joints and the distribution of pressures within them. Many biomechanical studies have reported the distribution of pressures in the elbow (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) with the elbow extended (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) but have only considered the Humeroradial Joint. (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017) Moreover, studies considering the humeroulnar Joint (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) are difficult to compare because of differences in the methodologies (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). The aim of this study was to evaluate the articular elbow pressures by reproducing the muscle contraction with different loads at 90 flexion. Ten cryopreserved cadaveric arms were dissected and the insertional tendons and capsuloligamentous tissues were preserved. The specimens were placed in a custom-made device. Elbow position was established at 90 flexion with the forearm in a neutral position and the wrist extended at 0 . Tekscan® B-201 sensors were used for measuring intraarticular pressures. We recorded pressure in six compartments of the elbow Joint and demonstrated the pressure changes inside them, depending on moment arms generated by loading tendons. Without loading the elbow, the Humeroradial Joint received the lowest pressure, and, among the humeroulnar Joints, the highest pressure was found in the anterolateral compartment. After loading the epitrochlear muscles to the maximum (5.0 kg), the pressure increased in the anteromedial Joint (0.6 kg to 3.3 kg) and decreased in the posteromedial and anterolateral Joints (4.2 kg to 0.3 kg and 4.2 kg to 0.9 kg, respectively). After the same loading in the epicondylar muscles, the pressure increased in the anterolateral and Humeroradial Joints (4.2 kg to 8.2 kg and 0.2 kg to 1.0 kg respectively), but decreased in the posterolateral Joint (3.4 kg to 1.0 kg). Elucidating the articular pressure distribution pattern of each muscle can be useful for future clinical and therapeutic protocols that aim to modify pressure loads in specific ulnohumeral/ radiohumeral Joint compartments such as radial head prosthesis or total elbow replacements in post-traumatic articular elbow disorders

  • Descripción de un modelo biomecánico en especímenes cadavéricos para el estudio de las presiones intra-articulares del codo en posición funcional estática: 90º de flexión y pronosupinación neutra
    'Universitat Autonoma de Barcelona', 2020
    Co-Authors: Casanova Canals Xavier
    Abstract:

    La la majoria de les activitats manuals diàries es realitzen amb l’articulació del colze en la posició de flexió. En aquest sentit, és important comprendre com participen en la distribució de la pressió articular els músculs que tenen l’origen i la inserció anatòmica al voltant del colze i que son els responsables tan de la seva posició com de la mobilitat del canell i dels dits de la mà. Molts estudis biomecànics previs han publicat la distribució de les pressions intra-articulars del colze (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) en la posició d’extensió (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) però considerant només l’articulació humero-radial (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017). D’altra banda, els estudis biomecànics del colze que han considerat l’articulació humero-cubital (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) son difícils de comparar perquè existeixen moltes diferències entre les metodologies utilitzades (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). L’objectiu d’aquest estudi ha sigut avaluar les pressions articulars del colze mitjançant un sistema que reprodueix experimentalment l’efecte de la contracció muscular amb la càrrega de diferents pesos en la posició de flexió del colze a 90º. S’han dissecat anatòmicament deu extremitats superiors criopreservades mantenint intactes les insercions tendinoses i els teixits capsulolligamentosos periarticulars. Els espècimens han estat col·locats en un aparell dissenyat específicament per a la seva subjecció en la posició de 90º de flexió del colze, pronosupinació neutra de l’avantbraç i extensió del canell a 0º. Les pressions intrarticulares han estat mesurades amb els sensors Tekscan® B-201. S’ha enregistrat la pressió articular en els 6 compartiments articulars del colze i s’han determinat els canvis de pressió en cada un d’ells depenent dels moments de força generats per la càrrega dels tendons. En absència de càrrega dels tendons, el compartiment humero-radial ha sigut el que menys pressió ha enregistrat, mentre que el compartiment humero-cubital anterolateral ha sigut el que ha estat sotmès a una pressió més elevada. Després de la càrrega dels tendons del grup muscular epitroclear fins a un màxim de 5kg, la pressió articular a l’articulació humero-cubital ha augmentat al compartiment anteromedial (0,6 kg a 3,3kg) i ha disminuït als compartiments posteromedials i anterolateral (4,2kg a 0,3kg i 4,2kg a 0.9kg, respectivament). Després de la mateix procés de càrrega dels tendons del grup muscular epicondilar, la pressió articular ha augmentat als compartiments humero-cubital anterolateral i humero-radial (4,2kg a 8,2kg i 0,2 a 1kg respectivament), però ha disminuït al compartiment humero-cubital posterolateral (3,4kg a 1,0 kg). Conèixer el patró de distribució de la pressió articular generat per cada múscul pot ser de gran utilitat a l’hora d’establir futurs protocols clínics i terapèutics que tinguin per objectiu modificar les càrregues de pressió sobre compartiments articulars humero-cubitals i/o humero-radials específics, com per exemple en el context de patologies articular posttraumàtica del colze que requereixen la implantació de pròtesis del cap del radi o d’una pròtesis total del colze.La mayoría de las actividades manuales diarias se realizan con la articulación del codo en una posición de flexión. En este sentido, es importante comprender como participan en la distribución de la presión articularlos músculos que tienen su origen e inserción anatómica alrededor del codo y que son los responsables tanto de su posición como de la movilidad de la muñeca y la mano. Muchos estudios biomecánicos previos han publicado la distribución de las presiones intra-articulares del codo (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) en la posición de extensión (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) pero considerando únicamente la articulación humero-radial (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017). Otros estudios biomecánicos del codo que han considerado la articulación humero-cubital (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) son de difícil comparación porque existen muchas diferencias entre las metodologías utilizadas (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). El objetivo de este estudio ha sido determinar las presiones articulares del codo mediante un sistema que reproduce experimentalmente el efecto de la contracción muscular con la carga de múltiples pesos en la posición de flexión del codo a 90º. Se han disecado anatómicamente diez extremidades superiores criopreservadas manteniendo intactas las inserciones tendinosas y los tejidos capsuloligamentosos periarticulares. Los especímenes se han colocado en un dispositivo diseñado específicamente para su sujeción en la posición de 90º de flexión del codo, pronosupinación neutra del antebrazo y extensión de muñeca a 0º. Las presiones intra-articulares se han medido con los sensores Tekscan® B-201. Se ha registrado la presión articular en los seis compartimentos articulares del codo y se han determinado los cambios de presión en cada uno de ellos dependiendo de los momentos de fuerza generados por la carga de los tendones. En ausencia de carga de los tendones, el compartimento humero-radial ha sido el que menos presión ha registrado, mientras que el compartimento humero-cubital anterolateral ha sido el ha estado sometido a una presión más elevada. Tras la carga de los tendones del grupo muscular epitroclear hasta un máximo de 5kg, la presión articular en la articulación humero-cubital ha incrementado en el compartimento anteromedial (0,6 kg a 3,3kg) y ha disminuido en los compartimentos posteromediales y anterolateral (4,2kg a 0,3kg y 4,2kg a 0.9kg, respectivamente). Tras el mismo proceso de carga de los tendones del grupo muscular epicondilar, la presión articular ha aumentado en los compartimentos humero-cubital anterolateral y humero-radial (4,2kg a 8,2kg y 0,2 a 1kg respectivament), però ha disminuido en el compartimento humero-cubital posterolateral (3,4kg a 1,0 kg). Conocer el patrón de distribución de la presión articular generado por cada músculo puede ser de gran ayuda a la hora de establecer futuros protocolos clínicos y terapéuticos que tengan por objectivo modificar las cargas de presión sobre compartimentos humero-radiales y/o humero-cubitales específicos, como por ejemplo, en el contexto de patologías articulares postraumàticas del codo que requieren la implantación de una prótesis de la cabeza del radio o de una prótesis total de codo.Elbow flexion is useful for sufficient elbow function and hand movement during daily activities. In this sense, it is important to understand the effects of the muscles that cross these Joints and the distribution of pressures within them. Many biomechanical studies have reported the distribution of pressures in the elbow (Ahmed and Burke, 1983; Amis et al., 1980; Anderson, 1978; Bachus et al., 2006; Bernstein et al., 2000; Bryce and Armstrong, 2008; Chantelot et al., 1998; Chantelot et al., 2008; Eckstein et al., 1994; Halls and Travill, 1964; Willing et al., 2013; Donkers et al., 1993) with the elbow extended (Chantelot et al., 2008; Diab et al., 2005; Halls and Travill, 1964; Tillmann, 1978) but have only considered the Humeroradial Joint. (Diab et al., 2005; Morrey et al., 1988; Ofuchi et al., 2001; Sahu et al., 2017) Moreover, studies considering the humeroulnar Joint (Chantelot et al., 2008; Goel et al., 1982; Halls and Travill, 1964) are difficult to compare because of differences in the methodologies (Ahmed and Burke, 1983; Diab et al., 2005; Eckstein et al., 1994; Eckstein et al., 1993; Goel et al., 1982; Morrey et al., 1988; Ofuchi et al., 2001; Paredes-Madrid et al., 2011; Willing et al., 2013). The aim of this study was to evaluate the articular elbow pressures by reproducing the muscle contraction with different loads at 90 flexion. Ten cryopreserved cadaveric arms were dissected and the insertional tendons and capsuloligamentous tissues were preserved. The specimens were placed in a custom-made device. Elbow position was established at 90 flexion with the forearm in a neutral position and the wrist extended at 0 . Tekscan® B-201 sensors were used for measuring intraarticular pressures. We recorded pressure in six compartments of the elbow Joint and demonstrated the pressure changes inside them, depending on moment arms generated by loading tendons. Without loading the elbow, the Humeroradial Joint received the lowest pressure, and, among the humeroulnar Joints, the highest pressure was found in the anterolateral compartment. After loading the epitrochlear muscles to the maximum (5.0 kg), the pressure increased in the anteromedial Joint (0.6 kg to 3.3 kg) and decreased in the posteromedial and anterolateral Joints (4.2 kg to 0.3 kg and 4.2 kg to 0.9 kg, respectively). After the same loading in the epicondylar muscles, the pressure increased in the anterolateral and Humeroradial Joints (4.2 kg to 8.2 kg and 0.2 kg to 1.0 kg respectively), but decreased in the posterolateral Joint (3.4 kg to 1.0 kg). Elucidating the articular pressure distribution pattern of each muscle can be useful for future clinical and therapeutic protocols that aim to modify pressure loads in specific ulnohumeral/ radiohumeral Joint compartments such as radial head prosthesis or total elbow replacements in post-traumatic articular elbow disorders.Universitat Autònoma de Barcelona. Programa de Doctorat en Cirurgia i Ciències Morfològique

Adriana Magdalena Candela - One of the best experts on this subject based on the ideXlab platform.

  • Paleobiology of Argyrolagus (Marsupialia, Argyrolagidae): an astonishing case of bipedalism among South American mammals
    Journal of Mammalian Evolution, 2020
    Co-Authors: María Alejandra Abello, Adriana Magdalena Candela
    Abstract:

    Argyrolagus constitutes, both for its craniodental and postcranial anatomy, one of the most notably specialized South American Neogene metatherians. Differentiating it from any other South American mammal, bipedal jumping has been proposed for Argyrolagus , even though this hypothesis was not supported by morphofunctional studies. Here, we describe the postcranium of A. scaglai (from the Pliocene of Argentina), perform a functional analysis, and interpret it against a varied background of locomotor adaptations of extant mammals. The configuration of Joints, the degree of development and location of muscular insertions were mainly analyzed, and functional indices were evaluated. This study indicates that Argyrolagus had stabilized glenohumeral and humeroulnar Joints, a great development of the arm retractors, flexors-extensors of the digits, pronator, and supinator muscles, low restrictive Humeroradial Joint, powerful extensor muscles of the hip, knee, and ankle, good development of the iliac muscle, and restrictive hind limb Joints. Joint configurations are interpreted to be optimal to resist the impacts during jumping, avoiding dislocation, compatible with digging activity. A compromise between the capacities to dig and manipulate objects is inferred. It is concluded that Argyrolagus had bipedal jumping locomotion as well as good capacity to dig, constituting an astonishing case of convergence with the small bipedal rodents and small Australian macropodids. We suggest that bipedal jumping in Miocene and Pliocene argyrolagids should not be necessarily related to a particular arid environment. Finally, we evaluate the importance of postcranial features to understand the phylogenetic relationships of Argyrolagidae in a comprehensive phylogeny of Metatheria.

Mirko Pham - One of the best experts on this subject based on the ideXlab platform.

  • Posterior interosseous neuropathy: Supinator syndrome vs fascicular radial neuropathy.
    Neurology, 2016
    Co-Authors: Philipp Baumer, Henrich Kele, Markus Weiler, Martin Bendszus, Annie Xia, Daniel Schwarz, Mirko Pham
    Abstract:

    Objective: To investigate the spatial pattern of lesion dispersion in posterior interosseous neuropathy syndrome (PINS) by high-resolution magnetic resonance neurography. Methods: This prospective study was approved by the local ethics committee and written informed consent was obtained from all patients. In 19 patients with PINS and 20 healthy controls, a standardized magnetic resonance neurography protocol at 3-tesla was performed with coverage of the upper arm and elbow (T2-weighted fat-saturated: echo time/repetition time 52/7,020 milliseconds, in-plane resolution 0.27 × 0.27 mm 2 ). Lesion classification of the radial nerve trunk and its deep branch (which becomes the posterior interosseous nerve) was performed by visual rating and additional quantitative analysis of normalized T2 signal of radial nerve voxels. Results: Of 19 patients with PINS, only 3 (16%) had a focal neuropathy at the entry of the radial nerve deep branch into the supinator muscle at elbow/forearm level. The other 16 (84%) had proximal radial nerve lesions at the upper arm level with a predominant lesion focus 8.3 ± 4.6 cm proximal to the Humeroradial Joint. Most of these lesions (75%) followed a specific somatotopic pattern, involving only those fascicles that would form the posterior interosseous nerve more distally. Conclusions: PINS is not necessarily caused by focal compression at the supinator muscle but is instead frequently a consequence of partial fascicular lesions of the radial nerve trunk at the upper arm level. Neuroimaging should be considered as a complementary diagnostic method in PINS.

  • anterior interosseous nerve syndrome fascicular motor lesions of median nerve trunk
    Neurology, 2014
    Co-Authors: Mirko Pham, Philipp Baumer, Hansmichael Meinck, Johannes Schiefer, Markus Weiler, Martin Bendszus, Henrich Kele
    Abstract:

    Objective: We sought to determine lesion sites and spatial lesion patterns in spontaneous anterior interosseous nerve syndrome (AINS) with high-resolution magnetic resonance neurography (MRN). Methods: In 20 patients with AINS and 20 age- and sex-matched controls, MRN of median nerve fascicles was performed at 3T with large longitudinal anatomical coverage (upper arm/elbow/forearm): 135 contiguous axial slices (T2-weighted: echo time/repetition time 52/7,020 ms, time of acquisition: 15 minutes 48 seconds, in-plane resolution: 0.25 × 0.25 mm). Lesion classification was performed by visual inspection and by quantitative analysis of normalized T2 signal after segmentation of median nerve voxels. Results: In all patients and no controls, T2 lesions of individual fascicles were observed within upper arm median nerve trunk and strictly followed a somatotopic/internal topography: affected were those motor fascicles that will form the anterior interosseous nerve further distally while other fascicles were spared. Predominant lesion focus was at a mean distance of 14.6 ± 5.4 cm proximal to the Humeroradial Joint. Discriminative power of quantitative T2 signal analysis and of qualitative lesion rating was high, with 100% sensitivity and 100% specificity ( p Conclusion: It has been difficult to prove the existence of fascicular/partial nerve lesions in spontaneous neuropathies using clinical and electrophysiologic findings. With MRN, fascicular lesions with strict somatotopic organization were observed in upper arm median nerve trunks of patients with AINS. Our data strongly support that AINS in the majority of cases is not a surgically treatable entrapment neuropathy but a multifocal mononeuropathy selectively involving, within the main trunk of the median nerve, the motor fascicles that continue distally to form the anterior interosseous nerve.

Hideki Sakanaka - One of the best experts on this subject based on the ideXlab platform.

  • posterior interosseous nerve palsy caused by synovial osteochondromatosis of the elbow analyzed by three dimensional reconstruction a case report
    Journal of Medical Case Reports, 2018
    Co-Authors: Koichi Yano, Kosuke Sasaki, Yasunori Kaneshiro, Hideki Sakanaka
    Abstract:

    Synovial osteochondromatosis, a benign tumor consisting of cartilage and bone, generally presents as multiple osteochondral or chondral nodules. Peripheral nerve palsy caused by synovial osteochondromatosis is rare. Three-dimensional reconstruction based on magnetic resonance imaging shows the specific shape and location of the tumor and its relation to the nerve. We describe a case of posterior interosseous nerve palsy caused by synovial osteochondromatosis of the elbow in a 66-year-old Japanese man. A three-dimensional reconstructed image based on magnetic resonance imaging was used to determine the location and shape of the giant tumor, which was composed of bone and cartilage. After surgical resection of the giant tumor and neurolysis of the posterior interosseous nerve, he fully recovered from nerve palsy 9 months postoperatively. There was no recurrence of the lesion 1 year postoperatively. Synovial osteochondromatosis that causes posterior interosseous nerve palsy has a characteristic morphology and location, that is, a giant tumor located anterior to the Humeroradial Joint, as revealed by three-dimensional magnetic resonance image reconstruction.

  • Posterior interosseous nerve palsy caused by synovial osteochondromatosis of the elbow analyzed by three-dimensional reconstruction: a case report
    BMC, 2018
    Co-Authors: Koichi Yano, Kosuke Sasaki, Yasunori Kaneshiro, Hideki Sakanaka
    Abstract:

    Abstract Background Synovial osteochondromatosis, a benign tumor consisting of cartilage and bone, generally presents as multiple osteochondral or chondral nodules. Peripheral nerve palsy caused by synovial osteochondromatosis is rare. Three-dimensional reconstruction based on magnetic resonance imaging shows the specific shape and location of the tumor and its relation to the nerve. Case presentation We describe a case of posterior interosseous nerve palsy caused by synovial osteochondromatosis of the elbow in a 66-year-old Japanese man. A three-dimensional reconstructed image based on magnetic resonance imaging was used to determine the location and shape of the giant tumor, which was composed of bone and cartilage. After surgical resection of the giant tumor and neurolysis of the posterior interosseous nerve, he fully recovered from nerve palsy 9 months postoperatively. There was no recurrence of the lesion 1 year postoperatively. Conclusion Synovial osteochondromatosis that causes posterior interosseous nerve palsy has a characteristic morphology and location, that is, a giant tumor located anterior to the Humeroradial Joint, as revealed by three-dimensional magnetic resonance image reconstruction

Henrich Kele - One of the best experts on this subject based on the ideXlab platform.

  • Posterior interosseous neuropathy: Supinator syndrome vs fascicular radial neuropathy.
    Neurology, 2016
    Co-Authors: Philipp Baumer, Henrich Kele, Markus Weiler, Martin Bendszus, Annie Xia, Daniel Schwarz, Mirko Pham
    Abstract:

    Objective: To investigate the spatial pattern of lesion dispersion in posterior interosseous neuropathy syndrome (PINS) by high-resolution magnetic resonance neurography. Methods: This prospective study was approved by the local ethics committee and written informed consent was obtained from all patients. In 19 patients with PINS and 20 healthy controls, a standardized magnetic resonance neurography protocol at 3-tesla was performed with coverage of the upper arm and elbow (T2-weighted fat-saturated: echo time/repetition time 52/7,020 milliseconds, in-plane resolution 0.27 × 0.27 mm 2 ). Lesion classification of the radial nerve trunk and its deep branch (which becomes the posterior interosseous nerve) was performed by visual rating and additional quantitative analysis of normalized T2 signal of radial nerve voxels. Results: Of 19 patients with PINS, only 3 (16%) had a focal neuropathy at the entry of the radial nerve deep branch into the supinator muscle at elbow/forearm level. The other 16 (84%) had proximal radial nerve lesions at the upper arm level with a predominant lesion focus 8.3 ± 4.6 cm proximal to the Humeroradial Joint. Most of these lesions (75%) followed a specific somatotopic pattern, involving only those fascicles that would form the posterior interosseous nerve more distally. Conclusions: PINS is not necessarily caused by focal compression at the supinator muscle but is instead frequently a consequence of partial fascicular lesions of the radial nerve trunk at the upper arm level. Neuroimaging should be considered as a complementary diagnostic method in PINS.

  • anterior interosseous nerve syndrome fascicular motor lesions of median nerve trunk
    Neurology, 2014
    Co-Authors: Mirko Pham, Philipp Baumer, Hansmichael Meinck, Johannes Schiefer, Markus Weiler, Martin Bendszus, Henrich Kele
    Abstract:

    Objective: We sought to determine lesion sites and spatial lesion patterns in spontaneous anterior interosseous nerve syndrome (AINS) with high-resolution magnetic resonance neurography (MRN). Methods: In 20 patients with AINS and 20 age- and sex-matched controls, MRN of median nerve fascicles was performed at 3T with large longitudinal anatomical coverage (upper arm/elbow/forearm): 135 contiguous axial slices (T2-weighted: echo time/repetition time 52/7,020 ms, time of acquisition: 15 minutes 48 seconds, in-plane resolution: 0.25 × 0.25 mm). Lesion classification was performed by visual inspection and by quantitative analysis of normalized T2 signal after segmentation of median nerve voxels. Results: In all patients and no controls, T2 lesions of individual fascicles were observed within upper arm median nerve trunk and strictly followed a somatotopic/internal topography: affected were those motor fascicles that will form the anterior interosseous nerve further distally while other fascicles were spared. Predominant lesion focus was at a mean distance of 14.6 ± 5.4 cm proximal to the Humeroradial Joint. Discriminative power of quantitative T2 signal analysis and of qualitative lesion rating was high, with 100% sensitivity and 100% specificity ( p Conclusion: It has been difficult to prove the existence of fascicular/partial nerve lesions in spontaneous neuropathies using clinical and electrophysiologic findings. With MRN, fascicular lesions with strict somatotopic organization were observed in upper arm median nerve trunks of patients with AINS. Our data strongly support that AINS in the majority of cases is not a surgically treatable entrapment neuropathy but a multifocal mononeuropathy selectively involving, within the main trunk of the median nerve, the motor fascicles that continue distally to form the anterior interosseous nerve.