Hyalella

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 2364 Experts worldwide ranked by ideXlab platform

J Marsalek - One of the best experts on this subject based on the ideXlab platform.

  • causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt part i polycyclic aromatic hydrocarbons and metals
    Science of The Total Environment, 2012
    Co-Authors: A J Bartlett, Q Rochfort, L R Brown, J Marsalek
    Abstract:

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) receives inputs of multiple contaminants, including metals, polycyclic aromatic hydrocarbons (PAHs), road salt, and nutrients, via highway and residential runoff. Contaminant concentrations in runoff are seasonally dependent, and are typically high in early spring, coinciding with the snowmelt. In order to investigate the seasonal fluctuations of contaminant loading and related changes in toxicity to benthic invertebrates, overlying water and sediment samples were collected in the fall and spring, reflecting low and high contaminant loading, respectively, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed here; the effects of salts, nutrients, and water quality are discussed in a companion paper. Survival and growth of Hyalella after exposure to fall samples were variable: survival was significantly reduced (64-74% of controls) at three out of four sites, but there were no significant growth effects. More dramatic effects were observed after Hyalella were exposed to spring samples: survival was significantly reduced at the two sites furthest downstream (0-75% of controls), and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site sediment with overlying site water versus site sediment with overlying control water. These seasonal changes in toxicity were not related to metals or PAHs: 1. levels of bioavailable metals were below those expected to cause toxicity, and 2. levels of PAHs in sediment were lowest at sites with the greatest toxicity and highest in water and sediment at sites with no toxicity. Although not associated with toxicity, some metals and PAHs exceeded probable and severe effect levels, and could be a cause for concern if contaminant bioavailability changes. Toxicity in the TWSMF appeared to be primarily associated with water-borne contaminants. The cause(s) of these effects are discussed in our companion manuscript.

  • causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt part ii salts nutrients and water quality
    Science of The Total Environment, 2012
    Co-Authors: A J Bartlett, Q Rochfort, L R Brown, J Marsalek
    Abstract:

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) features a tandem of stormwater management ponds, which receive inputs of multiple contaminants from highway and residential runoff. Previous research determined that benthic communities in the ponds were impacted by poor habitat quality, due to elevated sediment concentrations of metals and polycyclic aromatic hydrocarbons (PAHS), and salinity in the overlying water, but did not address seasonal changes, including those caused by the influx of contaminants with the snowmelt. In order to address this issue, water and sediment samples were collected from the TWSMF during the fall and spring, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed in a companion paper; the effects of road salt, nutrients, and water quality are discussed here. After exposure to fall samples, survival of Hyalella was reduced (64-74% of controls) at three out of four sites, but growth was not negatively affected. After exposure to spring samples, survival was 0-75% of controls at the two sites furthest downstream, and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site water overlying site sediment versus control water overlying site sediment. Toxicity appeared to be related to chloride concentrations: little or no toxicity occurred in fall samples (200 mg Cl(-)/L), and significant effects on survival and growth occurred in spring samples above 1550 mg Cl(-)/L and 380 mg Cl(-)/L, respectively. Sodium chloride toxicity tests showed similar results: four-week LC50s and EC25s (growth) were 1200 and 420 mg Cl(-)/L, respectively. Although water quality and nutrients were associated with effects observed in the TWSMF, chloride from road salt was the primary cause of toxicity in this study. Chloride persists during much of the year at concentrations representing a significant threat to benthic communities in the TWSMF.

Mcewan, Ryan W. - One of the best experts on this subject based on the ideXlab platform.

Uwe Borgmann - One of the best experts on this subject based on the ideXlab platform.

  • relative contribution of food and water to 27 metals and metalloids accumulated by caged Hyalella azteca in two rivers affected by metal mining
    Environmental Pollution, 2007
    Co-Authors: Uwe Borgmann, Yves Couillard, Lee Grapentine
    Abstract:

    Hyalella were caged at three sites in each of the two rivers for 17 days. Food added to the cages consisted of plant and detrital material collected from the same, or other, sites. Concentrations of some metals in Hyalella (e.g., Cd and Cu), but not others (e.g., Se), appeared to reach steady-state within 5 days in one of the rivers. Metal accumulation was minimal by day 5 in the other river, possibly due to the very low temperatures in this river for the first part of the exposure period. Both analysis of variance and analysis of covariance, using site as a categorical variable and metal in food as either a categorical or continuous variable, indicated that Cd, Cu and Se were the only metals for which concentration in food had a significant effect on concentration in Hyalella. Nevertheless, water was still a major source for these metals as well. Other metals which varied by over fivefold in food but for which concentration in food had no effect on concentration in Hyalella included Ag, As, Bi, Sb, U and Zn. Concentrations of the remaining metals varied less than fourfold in food, making it difficult to determine if these were accumulated from food.

  • Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca.
    Environmental pollution (Barking Essex : 1987), 2006
    Co-Authors: W.p. Norwood, Uwe Borgmann, D.g. Dixon
    Abstract:

    Abstract Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r2: 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g−1 appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment.

  • effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model
    Aquatic Toxicology, 2005
    Co-Authors: Uwe Borgmann, M Nowierski, George D Dixon
    Abstract:

    The effect of major ions (Ca, Mg, Na, and K) and pH on Cu toxicity (LC50) to Hyalella azteca was determined in 1 week exposures. The simplest equation for describing Cu toxicity is a linear relationship between the total dissolved Cu LC50 and Ca and Na in water, ignoring pH. This equation would be useful in tier one of a two-tiered approach; if the measured dissolved Cu exceeds the value predicted from the equation, the sample should either be tested for toxicity, or a more detailed chemical speciation analysis can be conducted. The data were not consistent with a single-binding-site biotic ligand model, assuming that toxicity was due to the free Cu ion alone. However, toxicity could be predicted using a two-binding-site model. This requires separate coefficients to account for the effects of Ca and Na at low and high pH values (6.5–8.4), corresponding to the different binding sites (Mg and K did not affect toxicity). The single-binding-site BLM does not allow for this. Toxicity of Cu hydroxide or carbonate complexes does not need to be invoked, but cannot be excluded, and several models invoking the toxicity of these complexes can also explain the data. The free ion LC50 is strongly dependent on pH, but the LC50 for total dissolved Cu is almost pH independent. The effects of Ca and Na on the free ion LC50 are very different at high and low pH (contrary to single-site biotic ligand model predictions), but similar for total dissolved Cu. Published data suggest that the same model, with different coefficients, can also be applied to Daphnia and fish. A more critical evaluation of the effects of cations at both low and high pH for organisms other than Hyalella is needed to determine if the BLM needs to be adjusted to incorporate more than one binding site for other species as well. Hydrogen ions reduce the toxicity of free Cu ions to Hyalella, but Cu also reduces the toxicity of hydrogen ions. A mixture model accounting for the joint toxicity of Cu and pH, as well as their mutual antagonistic effects, is presented.

  • re evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model
    Environmental Pollution, 2004
    Co-Authors: Uwe Borgmann, W.p. Norwood, D.g. Dixon
    Abstract:

    Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.

  • assessing the cause of impacts on benthic organisms near rouyn noranda quebec
    Environmental Pollution, 2004
    Co-Authors: Uwe Borgmann, M Nowierski, Lee Grapentine, D.g. Dixon
    Abstract:

    Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.

Custer, Kevin W. - One of the best experts on this subject based on the ideXlab platform.

Q Rochfort - One of the best experts on this subject based on the ideXlab platform.

  • causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt part i polycyclic aromatic hydrocarbons and metals
    Science of The Total Environment, 2012
    Co-Authors: A J Bartlett, Q Rochfort, L R Brown, J Marsalek
    Abstract:

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) receives inputs of multiple contaminants, including metals, polycyclic aromatic hydrocarbons (PAHs), road salt, and nutrients, via highway and residential runoff. Contaminant concentrations in runoff are seasonally dependent, and are typically high in early spring, coinciding with the snowmelt. In order to investigate the seasonal fluctuations of contaminant loading and related changes in toxicity to benthic invertebrates, overlying water and sediment samples were collected in the fall and spring, reflecting low and high contaminant loading, respectively, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed here; the effects of salts, nutrients, and water quality are discussed in a companion paper. Survival and growth of Hyalella after exposure to fall samples were variable: survival was significantly reduced (64-74% of controls) at three out of four sites, but there were no significant growth effects. More dramatic effects were observed after Hyalella were exposed to spring samples: survival was significantly reduced at the two sites furthest downstream (0-75% of controls), and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site sediment with overlying site water versus site sediment with overlying control water. These seasonal changes in toxicity were not related to metals or PAHs: 1. levels of bioavailable metals were below those expected to cause toxicity, and 2. levels of PAHs in sediment were lowest at sites with the greatest toxicity and highest in water and sediment at sites with no toxicity. Although not associated with toxicity, some metals and PAHs exceeded probable and severe effect levels, and could be a cause for concern if contaminant bioavailability changes. Toxicity in the TWSMF appeared to be primarily associated with water-borne contaminants. The cause(s) of these effects are discussed in our companion manuscript.

  • causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt part ii salts nutrients and water quality
    Science of The Total Environment, 2012
    Co-Authors: A J Bartlett, Q Rochfort, L R Brown, J Marsalek
    Abstract:

    The Terraview-Willowfield Stormwater Management Facility (TWSMF) features a tandem of stormwater management ponds, which receive inputs of multiple contaminants from highway and residential runoff. Previous research determined that benthic communities in the ponds were impacted by poor habitat quality, due to elevated sediment concentrations of metals and polycyclic aromatic hydrocarbons (PAHS), and salinity in the overlying water, but did not address seasonal changes, including those caused by the influx of contaminants with the snowmelt. In order to address this issue, water and sediment samples were collected from the TWSMF during the fall and spring, and four-week sediment toxicity tests were conducted with Hyalella azteca. The effects of metals and PAHs are discussed in a companion paper; the effects of road salt, nutrients, and water quality are discussed here. After exposure to fall samples, survival of Hyalella was reduced (64-74% of controls) at three out of four sites, but growth was not negatively affected. After exposure to spring samples, survival was 0-75% of controls at the two sites furthest downstream, and growth was significantly lower in four out of five sites when comparing Hyalella exposed to site water overlying site sediment versus control water overlying site sediment. Toxicity appeared to be related to chloride concentrations: little or no toxicity occurred in fall samples (200 mg Cl(-)/L), and significant effects on survival and growth occurred in spring samples above 1550 mg Cl(-)/L and 380 mg Cl(-)/L, respectively. Sodium chloride toxicity tests showed similar results: four-week LC50s and EC25s (growth) were 1200 and 420 mg Cl(-)/L, respectively. Although water quality and nutrients were associated with effects observed in the TWSMF, chloride from road salt was the primary cause of toxicity in this study. Chloride persists during much of the year at concentrations representing a significant threat to benthic communities in the TWSMF.