Hydra

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 13857 Experts worldwide ranked by ideXlab platform

Celina E Juliano - One of the best experts on this subject based on the ideXlab platform.

  • piwi pirna pathway mediated transposable element repression in Hydra somatic stem cells
    RNA, 2020
    Co-Authors: Bryan B Teefy, Haifan Lin, Stefan Siebert, Jack F Cazet, Celina E Juliano
    Abstract:

    Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations, all of which express PIWI proteins; endodermal and ectodermal epithelial stem cells (ESCs) are somatic, whereas the interstitial stem cells have germline competence. To study somatic function of the pathway, we isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI-piRNA pathway represses TEs in Hydra ESCs. First, epithelial knockdown of the Hydra piwi gene hywi resulted in up-regulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Altogether, our data reveal that the PIWI-piRNA pathway represses TE expression in the somatic cell lineages of Hydra, which we propose contributes to the extreme longevity of the organism. Furthermore, our results, in combination with others, suggest that somatic TE repression is an ancestral function of the PIWI-piRNA pathway.

  • piwi pirna pathway mediated transposable element repression in Hydra somatic stem cells
    bioRxiv, 2019
    Co-Authors: Bryan B Teefy, Haifan Lin, Stefan Siebert, Jack F Cazet, Celina E Juliano
    Abstract:

    Abstract Transposable elements (TEs) can damage genomes, thus organisms employ a variety of mechanisms to repress TE expression. However, these mechanisms often fail over time leading to de-repression of TEs in aging tissues. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the epithelial stem cells of Hydra, a long-lived freshwater cnidarian. Hydra have three stem cell populations; endodermal and ectodermal epithelial stem cells are strictly somatic, whereas the interstitial stem cells retain germline competence. In our previous study, we found that the PIWI proteins are expressed in all three Hydra stem cell types. In this study, we focus on the ectodermal and endodermal epithelial stem cells to understand the somatic function of the pathway. We isolated piRNAs from Hydra that lack the interstitial lineage and found that these somatic piRNAs map predominantly to TE transcripts and display the conserved sequence signatures typical of germline piRNAs. Three lines of evidence suggest that the PIWI-piRNA pathway represses TEs in Hydra epithelial stem cells. First, epithelial knockdown of the Hydra PIWI protein hywi resulted in upregulation of TE expression. Second, degradome sequencing revealed evidence of PIWI-mediated cleavage of TE RNAs in epithelial cells using the ping-pong mechanism. Finally, we demonstrated a direct association between Hywi protein and TE transcripts in epithelial cells using RNA immunoprecipitation. Interestingly, we found that RNAi knockdown of hywi leads to an upregulation of genes involved in innate immunity, which may be in response to TE upregulation; this is consistent with recent studies on TE expression in mammalian cells. Altogether, this study suggests a function for the PIWI-piRNA pathway in maintaining the long-lived somatic cell lineages of Hydra and may point to a broader role for this pathway in protecting somatic tissue from TE-induced damage.

  • stem cell differentiation trajectories in Hydra resolved at single cell resolution
    bioRxiv, 2018
    Co-Authors: Stefan Siebert, Jack F Cazet, Jeffrey A Farrell, Yashodara L Abeykoon, Abby S Primack, Christine E Schnitzler, Celina E Juliano
    Abstract:

    Abstract The adult Hydra polyp continuously renews all of its cells using three separate stem cell populations, but the genetic pathways enabling homeostatic tissue maintenance are not well understood. We used Drop-seq to sequence transcriptomes of 24,985 single Hydra cells and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified the transcription factors expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. We unexpectedly found that neuron and gland cell differentiation transits through a common progenitor state, suggesting a shared evolutionary history for these secretory cell types. Finally, we have built the first gene expression map of the Hydra nervous system. By producing a comprehensive molecular description of the adult Hydra polyp, we have generated a resource for addressing fundamental questions regarding the evolution of developmental processes and nervous system function.

  • PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells
    Proceedings of the National Academy of Sciences, 2013
    Co-Authors: Celina E Juliano, Na Liu, Adrian Reich, Jessica Götzfried, Mei Zhong, Selen Uman, Robert A. Reenan, Gary M. Wessel, Robert Steele, Haifan Lin
    Abstract:

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI–piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality.

Brigitte Galliot - One of the best experts on this subject based on the ideXlab platform.

  • An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra.
    Nature communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • an evolutionary conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    bioRxiv, 2018
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    The Hydra polyp regenerates its head by transforming the gastric tissue below the wound into a head organizer made of two antagonistic cross-reacting components. The activator, previously characterized as Wnt3, drives apical differentiation by acting locally and auto-catalytically. The uncharacterized inhibitor, produced under the control of the activator, prevents ectopic head formation. By crossing RNA-seq data obtained in a β-catenin(RNAi) screen performed in planarians and a quantitative analysis of positional and temporal gene expression in Hydra, we identified Sp5 as a transcription factor that fulfills the head inhibitor properties: a Wnt/β-catenin inducible expression, a graded apical-to-basal expression, a sustained up-regulation during head regeneration, a multi-headed phenotype when knocked-down, a repressing activity on Wnt3 expression. In mammalian cells, Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also auto-activates its expression, possibly via β-catenin and/or Tcf/Lef1 interaction. This work identifies Sp5 as a novel potent feedback loop inhibitor of Wnt/β-catenin signaling across eumetazoans.

  • autophagy in Hydra a response to starvation and stress in early animal evolution
    Biochimica et Biophysica Acta, 2009
    Co-Authors: Simona Chera, Wanda Christa Buzgariu, Luiza Ghila, Brigitte Galliot
    Abstract:

    The Hydra polyp provides a powerful model system to investigate the regulation of cell survival and cell death in homeostasis and regeneration as Hydra survive weeks without feeding and regenerates any missing part after bisection. Induction of autophagy during starvation is the main surviving strategy in Hydra as autophagic vacuoles form in most myoepithelial cells after several days. When the autophagic process is inhibited, animal survival is actually rapidly jeopardized. An appropriate regulation of autophagy is also essential during regeneration as Hydra RNAi knocked-down for the serine protease inhibitor Kazal-type (SPINK) gene Kazal1, exhibit a massive autophagy after amputation that rapidly compromises cell and animal survival. This excessive autophagy phenotype actually mimics that observed in the mammalian pancreas when SPINK genes are mutated, highlighting the paradigmatic value of the Hydra model system for deciphering pathological processes. Interestingly autophagy during starvation predominantly affects ectodermal epithelial cells and lead to cell survival whereas Kazal1(RNAi)-induced autophagy is restricted to endodermal digestive cells that rapidly undergo cell death. This indicates that distinct regulations that remain to be identified, are at work in these two contexts. Cnidarian express orthologs for most components of the autophagy and TOR pathways suggesting evolutionarily-conserved roles during starvation.

Christine Rampon - One of the best experts on this subject based on the ideXlab platform.

  • an evolutionarily conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    Nature Communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra.
    Nature communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • an evolutionary conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    bioRxiv, 2018
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    The Hydra polyp regenerates its head by transforming the gastric tissue below the wound into a head organizer made of two antagonistic cross-reacting components. The activator, previously characterized as Wnt3, drives apical differentiation by acting locally and auto-catalytically. The uncharacterized inhibitor, produced under the control of the activator, prevents ectopic head formation. By crossing RNA-seq data obtained in a β-catenin(RNAi) screen performed in planarians and a quantitative analysis of positional and temporal gene expression in Hydra, we identified Sp5 as a transcription factor that fulfills the head inhibitor properties: a Wnt/β-catenin inducible expression, a graded apical-to-basal expression, a sustained up-regulation during head regeneration, a multi-headed phenotype when knocked-down, a repressing activity on Wnt3 expression. In mammalian cells, Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also auto-activates its expression, possibly via β-catenin and/or Tcf/Lef1 interaction. This work identifies Sp5 as a novel potent feedback loop inhibitor of Wnt/β-catenin signaling across eumetazoans.

Sophie Vriz - One of the best experts on this subject based on the ideXlab platform.

  • an evolutionarily conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    Nature Communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra.
    Nature communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • an evolutionary conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    bioRxiv, 2018
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    The Hydra polyp regenerates its head by transforming the gastric tissue below the wound into a head organizer made of two antagonistic cross-reacting components. The activator, previously characterized as Wnt3, drives apical differentiation by acting locally and auto-catalytically. The uncharacterized inhibitor, produced under the control of the activator, prevents ectopic head formation. By crossing RNA-seq data obtained in a β-catenin(RNAi) screen performed in planarians and a quantitative analysis of positional and temporal gene expression in Hydra, we identified Sp5 as a transcription factor that fulfills the head inhibitor properties: a Wnt/β-catenin inducible expression, a graded apical-to-basal expression, a sustained up-regulation during head regeneration, a multi-headed phenotype when knocked-down, a repressing activity on Wnt3 expression. In mammalian cells, Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also auto-activates its expression, possibly via β-catenin and/or Tcf/Lef1 interaction. This work identifies Sp5 as a novel potent feedback loop inhibitor of Wnt/β-catenin signaling across eumetazoans.

Chrystelle Perruchoud - One of the best experts on this subject based on the ideXlab platform.

  • an evolutionarily conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    Nature Communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra.
    Nature communications, 2019
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    Polyps of the cnidarian Hydra maintain their adult anatomy through two developmental organizers, the head organizer located apically and the foot organizer basally. The head organizer is made of two antagonistic cross-reacting components, an activator, driving apical differentiation and an inhibitor, preventing ectopic head formation. Here we characterize the head inhibitor by comparing planarian genes down-regulated when β-catenin is silenced to Hydra genes displaying a graded apical-to-basal expression and an up-regulation during head regeneration. We identify Sp5 as a transcription factor that fulfills the head inhibitor properties: leading to a robust multiheaded phenotype when knocked-down in Hydra, acting as a transcriptional repressor of Wnt3 and positively regulated by Wnt/β-catenin signaling. Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also activates its own expression, likely via β-catenin/TCF interaction. This work identifies Sp5 as a potent feedback loop inhibitor of Wnt/β-catenin signaling, a function conserved across eumetazoan evolution.

  • an evolutionary conserved wnt3 β catenin sp5 feedback loop restricts head organizer activity in Hydra
    bioRxiv, 2018
    Co-Authors: Matthias Christian Vogg, Leonardo Beccari, Laura Iglesias Olle, Christine Rampon, Sophie Vriz, Chrystelle Perruchoud, Yvan Wenger, Brigitte Galliot
    Abstract:

    The Hydra polyp regenerates its head by transforming the gastric tissue below the wound into a head organizer made of two antagonistic cross-reacting components. The activator, previously characterized as Wnt3, drives apical differentiation by acting locally and auto-catalytically. The uncharacterized inhibitor, produced under the control of the activator, prevents ectopic head formation. By crossing RNA-seq data obtained in a β-catenin(RNAi) screen performed in planarians and a quantitative analysis of positional and temporal gene expression in Hydra, we identified Sp5 as a transcription factor that fulfills the head inhibitor properties: a Wnt/β-catenin inducible expression, a graded apical-to-basal expression, a sustained up-regulation during head regeneration, a multi-headed phenotype when knocked-down, a repressing activity on Wnt3 expression. In mammalian cells, Hydra and zebrafish Sp5 repress Wnt3 promoter activity while Hydra Sp5 also auto-activates its expression, possibly via β-catenin and/or Tcf/Lef1 interaction. This work identifies Sp5 as a novel potent feedback loop inhibitor of Wnt/β-catenin signaling across eumetazoans.