Imidazolidinone

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 279 Experts worldwide ranked by ideXlab platform

Takehisa Kunieda - One of the best experts on this subject based on the ideXlab platform.

Jiangchun Zhong - One of the best experts on this subject based on the ideXlab platform.

Alaa A.-m. Abdel-aziz - One of the best experts on this subject based on the ideXlab platform.

Jens Kristian Perregaard - One of the best experts on this subject based on the ideXlab platform.

  • serotonin 5 ht2 receptor dopamine d2 receptor and α1 adrenoceptor antagonists conformationally flexible analogues of the atypical antipsychotic sertindole
    Journal of Medicinal Chemistry, 1996
    Co-Authors: Kim Andersen, John Hyttel, Tommy Liljefors, Jens Kristian Perregaard
    Abstract:

    Conformationally flexible analogues of the atypical antipsychotic sertindole (1-[2-[4-[5-chloro -1-(4-fluorophenyl)-1H-indol-3-yl]-4-piperidinyl]ethyl]-2-imidazolidi non e) were synthesized. Replacement of the 4-piperidinyl ring in sertindole by a 2-(methylamino)ethoxy group or a 2-(methylamino)ethyl group (e.g. 1-[2-[2-[5-chloro-1-(4-fluorophenyl)-1H -indol-3-yloxy]ethyl-methylamino]ethyl]-2-Imidazolidinone and 1-[3-[[2-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl] -ethyl]methylamino]propyl]-2-Imidazolidinone results in binding affinities for serotonin 5-HT2A and dopamine D2 receptors, as well as alpha 1 adrenoceptors, which are very similar to those of sertindole. (Methylamino)alkyl groups of other chain lengths, 3-(methylamino)propyloxy groups, and 2-(methylamino)ethylsulfanyl groups do not have such properties. The capability of the 2-(methylamino)ethoxy group and the 2-(methylamino)ethyl group to replace the 4-piperidinyl ring in sertindole is reflected in molecular modeling studies using recently published receptor-interaction models for 5-HT2 and D2 receptors. Structure-affinity investigations concerning the substituents in the indole nucleus and the 2-Imidazolidinone ring system in the 2-(methylamino)ethoxy and the 2-(methylamino)ethyl analogues of sertindole have led to high affinity serotonin 5-HT2A receptor antagonists with selectivity versus dopamine D2 receptors and alpha 1 adrenoceptors (e.g. 1-[2-[[2-[6-chloro-1-(4-fluorophenyl) -1H-indol-3-yloxy]ethyl]methylamino]-ethyl]-2-Imidazolidinone and 1-[3-[[2-[6-chloro-1-(4-fluorophenyl) -1H-indol-3-yl]ethyl]methylamino]propyl]-2-Imidazolidinone). The latter derivative has also high selectivity for 5-HT2A receptors versus serotonin 5-HT2C receptors. Replacement of the basic amino group by nitrogen-containing six-membered rings has led to 5-chloro-1-(4-fluorophenyl)-3-[(4-methylpiperazinyl)-ethoxy]-1H-in dole, which has high affinity for dopamine D2, versus low affinity for serotonin 5-HT2A receptors and alpha 1 adrenoceptors.

  • Selective, centrally acting serotonin 5-HT2 antagonists. 1. 2- and 6-substituted 1-phenyl-3-(4-piperidinyl)-1H-indoles.
    Journal of medicinal chemistry, 1992
    Co-Authors: Jens Kristian Perregaard, Kim Andersen, John Hyttel, Connie Sánchez
    Abstract:

    A series of 1-[2-[4-(1H-indol-3-yl)-1-piperidinyl]ethyl]-2-Imidazolidinones has been synthesized. The 1-position of the indole is substituted with phenyl groups and in the 2- or 6-positions are additional substituents. An analogous series with the Imidazolidinone ring opened to corresponding urea derivatives was also prepared. High potency and selectivity for 5-HT2 receptors (as compared with D2 and alpha 1 receptor affinities) were obtained with medium-large substituents such as 6-chloro, 6-methyl, and 6-trifluoromethyl or a 2-methyl substituent. Larger 6-substituents such as isopropyl considerably reduced activity, while the smaller 6-fluoro substituent afforded unselective compounds. Selective 5-HT2 antagonists were found by combining 6-substitution with both unsubstituted 1-phenyl and substituted 1-phenyl groups (2-F, 4-F, 4-Cl). However, 3-substitution of the phenyl group markedly reduced 5-HT2 receptor affinity, especially with a 3-trifluoromethyl substituent. Introduction of a 3-(2-propyl) substituent in the Imidazolidinone ring reduced binding to alpha 1 adrenoceptors with a factor of 3-8. Practically no influence on 5-HT2 and D2 receptor affinities were found by the presence of this substituent compared to the 3-unsubstituted derivatives. Compounds with potent receptor binding also potently inhibited the quipazine-induced head twitch syndrome in rats. The compounds were equally active after oral and subcutaneous administration and they had a long duration of action (> 24 h). Especially urea derivatives were found to be considerably more potent at 24 h than at 2 h after subcutaneous administration. Some of the compounds potently inhibited isolation-induced aggression in mice, an effect which, however, did not correlate to 5-HT2 receptor-mediated activities. On the basis of these structure-activity studies 1-[2-[4-[6-chloro-1-(4-fluorophenyl)-1H-indol-3-yl]-1- piperidinyl]ethyl]-3-(2-propyl)-2-Imidazolidinone (Lu 26-042, compound 4c) was selected for further pharmacological and toxicological investigations.

Hirofumi Matsunaga - One of the best experts on this subject based on the ideXlab platform.