Interoceptor

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 243 Experts worldwide ranked by ideXlab platform

M P Evstigneev - One of the best experts on this subject based on the ideXlab platform.

  • General analysis of competitive binding in drug–interceptor–DNA systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, D B Davies, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

  • general analysis of competitive binding in drug interceptor dna systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, A Hernandez A Santiago, Gonzalez M Flores, Vazquez R Ramirez, D B Davies, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

Anatoly S Buchelnikov - One of the best experts on this subject based on the ideXlab platform.

  • General analysis of competitive binding in drug–interceptor–DNA systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, D B Davies, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

  • general analysis of competitive binding in drug interceptor dna systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, A Hernandez A Santiago, Gonzalez M Flores, Vazquez R Ramirez, D B Davies, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

D B Davies - One of the best experts on this subject based on the ideXlab platform.

  • General analysis of competitive binding in drug–interceptor–DNA systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, D B Davies, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

  • general analysis of competitive binding in drug interceptor dna systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, A Hernandez A Santiago, Gonzalez M Flores, Vazquez R Ramirez, D B Davies, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.

Mark Rowland - One of the best experts on this subject based on the ideXlab platform.

  • which intervention is better for malaria vector control insecticide mixture long lasting insecticidal nets or standard pyrethroid nets combined with indoor residual spraying
    Malaria Journal, 2017
    Co-Authors: Corine Ngufor, Josias Fagbohoun, Jessica Critchley, Raphael Nguessan, Damien Todjinou, David Malone, Martin Akogbeto, Mark Rowland
    Abstract:

    Malaria control today is threatened by widespread insecticide resistance in vector populations. The World Health Organization (WHO) recommends the use of a mixture of unrelated insecticides for indoor residual spraying (IRS) and long-lasting insecticidal nets (LNs) or as a combination of interventions for improved vector control and insecticide resistance management. Studies investigating the efficacy of these different strategies are necessary. The efficacy of Interceptor® G2 LN, a newly developed LN treated with a mixture of chlorfenapyr (a pyrrole) and alpha-cypermethrin (a pyrethroid), was compared to a combined chlorfenapyr IRS and Interceptor® LN (a standard alpha-cypermethrin LN) intervention in experimental huts in Cove Southern Benin, against wild, free-flying, pyrethroid-resistant Anopheles gambiae s.l. A direct comparison was also made with a pyrethroid-only net (Interceptor® LN) alone and chorfenapyr IRS alone. WHO resistance bioassays performed during the trial demonstrated a pyrethroid resistance frequency of >90% in the wild An. gambiae s.l. from the Cove hut site. Mortality in the control (untreated net) hut was 5%. Mortality with Interceptor® LN (24%) was lower than with chlorfenapyr IRS alone (59%, P < 0.001). The combined Interceptor® LN and chlorfenapyr IRS intervention and the mixture net (Interceptor® G2 LN) provided significantly higher mortality rates (73 and 76%, respectively) and these did not differ significantly between both treatments (P = 0.15). Interceptor LN induced 46% blood-feeding inhibition compared to the control untreated net, while chlorfenapyr IRS alone provided none. Both mixture/combination strategies also induced substantial levels of blood-feeding inhibition (38% with combined interventions and 30% with Interceptor® G2 LN). A similar trend of improved mortality of pyrethroid-resistant An. gambiae s.l. from Cove was observed with Interceptor® G2 LN (79%) compared to Interceptor LN (42%, P < 0.001) in WHO tunnel tests. The use of chlorfenapyr and alpha-cypermethrin together as a mixture on nets (Interceptor® G2 LN) or a combined chlorfenapyr IRS and pyrethroid LN intervention provides improved control of pyrethroid-resistant malaria vectors by inducing significantly higher levels of mortality through the chlorfenapyr component and providing personal protection through the pyrethroid component. Both strategies are comparable in their potential to improve the control of malaria transmitted by pyrethroid resistant mosquito vectors.

  • Interceptor® long-lasting insecticidal net: phase III evaluation over three years of household use and calibration with Phase II experimental hut outcomes
    Parasites & Vectors, 2016
    Co-Authors: Patrick Tungu, Matthew Kirby, Robert Malima, William Kisinza, Stephen Magesa, Caroline Maxwell, Benard Batengana, Olivier Pigeon, Mark Rowland
    Abstract:

    Background Long-lasting insecticidal nets (LN) are an effective tool for malaria prevention. The World Health Organization Pesticide Evaluation Scheme has established evaluation criteria to facilitate registration for public use. A household randomised trial was conducted in Tanzania according to WHOPES Phase III procedures to evaluate the alpha-cypermethrin coated Interceptor® LN (BASF) over three years’ use. Outcomes were calibrated against results of Phase II experimental hut trials. Methods Interceptor LN (200 mg/m^2 alpha-cypermethrin) and conventionally treated nets CTN (40 mg/m^2 alpha-cypermethrin) were randomly distributed to 934 households. At 6-monthly intervals, household surveys recorded net use, durability, adverse effects, user acceptance and washing practices. Concurrently, 30 nets of each type were collected and tested for knock-down and kill of Anopheles gambiae mosquitoes in cone and tunnel bioassays. Alpha-cypermethrin content of nets was assessed annually. Results At 12 months 97 % of Interceptor LN met the efficacy criteria by cone or tunnel test; this pass rate declined to 90 % at 24 months and 87 % at 36 months. In contrast only 63 % of CTN met the efficacy criteria at 12 months, 14 % at 24 months and 0 % at 36 months. The alpha-cypermethrin content at 36 months on Interceptor LN was 20 % (42 ± 13 mg/m^2) of the initial content but on CTNs only 4 % (1.3 ± 1.6 mg/m^2) remained. Interceptor LN was reported to be used year-round and washed 4.3 times/year. A few recalled facial tingling during the first days of use but this did not deter usage. The average number of holes at 36 months was 18, hole area per net was 229 cm^2 and hole index was 332. Insecticide content and cone bioefficacy of LN and CTN after 36 months’ use were similar to that of LN and CTN used in earlier Phase II hut trials, but while the 20 times washed LN tested in experimental huts gave adequate personal protection the 20 times washed CTN did not. Conclusions More than 80 % Interceptor LN fulfilled the WHOPES Phase III criteria at 36 months and thus the LLIN was granted full WHO recommendation. Phase III outcomes at 36 months were anticipated by Phase II outcomes after 20 standardized washes.

R. Vazquez Ramirez - One of the best experts on this subject based on the ideXlab platform.

  • General analysis of competitive binding in drug–interceptor–DNA systems
    European Biophysics Journal, 2012
    Co-Authors: Anatoly S Buchelnikov, D B Davies, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, M P Evstigneev
    Abstract:

    A general model of competitive binding in drug–interceptor–DNA systems has been developed in order to quantify both the interceptor and protector mechanisms. The model involves full parameterization of the basic equations governing the mutual competition between drugs binding to DNA and incorporates as partial cases various similar models existing in the literature. The generality of the model results from strict accounting of the statistical effects of the binding of the drug and interceptor with DNA according to the McGhee-von Hippel formalism, and to the strict treatment of hetero-association between the drug and interceptor, which includes formation of all possible types of self- and hetero-complexes in solution. Indirect experimental evidence is provided for the importance of the protector mechanism in drug–caffeine–DNA systems, which is sometimes ignored in the literature because of the small magnitude of the CAF-DNA binding constant.