IRF5

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 38769 Experts worldwide ranked by ideXlab platform

Joseph S. Pagano - One of the best experts on this subject based on the ideXlab platform.

  • interferon regulatory factor 5 represses expression of the epstein barr virus oncoprotein lmp1 braking of the irf7 lmp1 regulatory circuit
    Journal of Virology, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    We have reported evidence for a positive regulatory circuit between interferon regulatory factor 7 (IRF7) and the Epstein-Barr virus (EBV) oncoprotein 1 (LMP1) (S. Ning, A. M. Hahn, and J. S. Pagano, J. Virol. 77:9359-9368, 2003). To explore a possible braking mechanism for this circuit, several type II EBV-infected cell lines that express different levels of LMP1 and IRF7 proteins and therefore are convenient for studying modulation of expression of LMP1 were analyzed. Endogenous levels of IRF7 and LMP1 were directly correlated. Transient expression of an IRF7 dominant-negative mutant decreased LMP1 levels. Endogenous IRF5 and IRF7 proteins were shown to physically associate in EBV-positive cells. Transient expression of IRF5 decreased activation of the LMP1 promoter by IRF7 in a dose-dependent manner. Finally, transfection of either an IRF5 dominant-negative construct or IRF5 small interfering RNA in these cells resulted in increases in endogenous levels of LMP1. These results indicate that IRF5 can downregulate IRF7's induction of expression of LMP1 most likely by interacting with IRF7 and provide a means of modulating a regulatory circuit between IRF7 and LMP1.

  • Interferon Regulatory Factor 5 Represses Expression of the Epstein-Barr Virus Oncoprotein LMP1: Braking of the IRF7/LMP1 Regulatory Circuit
    Journal of Virology, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    We have reported evidence for a positive regulatory circuit between interferon regulatory factor 7 (IRF7) and the Epstein-Barr virus (EBV) oncoprotein 1 (LMP1) (S. Ning, A. M. Hahn, and J. S. Pagano, J. Virol. 77:9359-9368, 2003). To explore a possible braking mechanism for this circuit, several type II EBV-infected cell lines that express different levels of LMP1 and IRF7 proteins and therefore are convenient for studying modulation of expression of LMP1 were analyzed. Endogenous levels of IRF7 and LMP1 were directly correlated. Transient expression of an IRF7 dominant-negative mutant decreased LMP1 levels. Endogenous IRF5 and IRF7 proteins were shown to physically associate in EBV-positive cells. Transient expression of IRF5 decreased activation of the LMP1 promoter by IRF7 in a dose-dependent manner. Finally, transfection of either an IRF5 dominant-negative construct or IRF5 small interfering RNA in these cells resulted in increases in endogenous levels of LMP1. These results indicate that IRF5 can downregulate IRF7's induction of expression of LMP1 most likely by interacting with IRF7 and provide a means of modulating a regulatory circuit between IRF7 and LMP1.

  • Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling.
    Journal of Biological Chemistry, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    Abstract Genes containing an interferon (IFN)-stimulated response element (ISRE) can be divided into two groups according to their inducibility by IFN and virus infection: one induced only by IFN and the other induced by both IFN and virus infection. Although it is now clear that IFN regulatory factor 7 (IRF7) is a multifunctional gene essential for induction of type I IFNs, regulation of the IRF7 promoter (IRF7p) is poorly understood. The IRF7 gene includes two IFN responsive elements, an IRF-binding element (IRFE) in the promoter region and an ISRE in the first intron, and is induced by the IFN-triggered Jak-STAT pathway by binding of the IFN-stimulated gene factor 3 (ISGF3) complex to the ISRE. In this study, we demonstrate that IRF3 and IRF7, which with the coactivators CREB-binding protein and P300 form the virus-activated factor (VAF) complex upon Sendai virus infection, bind to the IRF7 ISRE and IRFE and can directly activate IRF7 transcription. Promoter reporter assays show that both the ISRE and IRFE are responsive to activation by IRF7 and IRF3. In cells transiently expressing IRF7 or/and IRF3, the VAF level and binding of VAF are clearly increased after Sendai virus infection. Studies with Jak1 kinase inactive 293 cells that were stably transfected with a Jak1 kinase dead dominant negative construct, and the mutant cell lines SAN (IFNα–/β–), U2A (IRF9–), U4A (Jak1–), and DKO (IRF1–/IRF2–) show that the IRF7 transcription activated directly by VAF is distinct from and independent of the IFN signaling pathway. Thus, IRF7 transcription is autoregulated by binding of the IRF7-containing VAF to its own ISRE and IRFE. The results show two distinct mechanisms for the activation of the IRF7 promoter, by IFN and by virus infection. A regulatory network between type I IFNs and IRF7 is proposed. The distinct pathways may reflect special roles for an efficient antiviral response at different stages of virus infection.

Michael S. Diamond - One of the best experts on this subject based on the ideXlab platform.

  • an irf 3 irf 5 and irf 7 independent pathway of dengue viral resistance utilizes irf 1 to stimulate type i and ii interferon responses
    Cell Reports, 2017
    Co-Authors: Aaron F Carlin, Emily M Plummer, Edward A Vizcarra, Nicholas Sheets, Yunichel Joo, William W Tang, Jeremy Day, J Greenbaum, Christopher K Glass, Michael S. Diamond
    Abstract:

    Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1-/-) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3-/-IRF5-/-Irf7-/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection.

  • a mouse model of zika virus pathogenesis
    Cell Host & Microbe, 2016
    Co-Authors: Helen M Lazear, Jerome James Miner, Derek J Platt, Amber M Smith, Estefania Fernandez, Jennifer Govero, Michael S. Diamond
    Abstract:

    Summary The ongoing Zika virus (ZIKV) epidemic and unexpected clinical outcomes, including Guillain-Barre syndrome and birth defects, has brought an urgent need for animal models. We evaluated infection and pathogenesis with contemporary and historical ZIKV strains in immunocompetent mice and mice lacking components of the antiviral response. Four- to six-week-old Irf3 −/− IRF5 −/− Irf7 −/− triple knockout mice, which produce little interferon α/β, and mice lacking the interferon receptor ( Ifnar1 −/− ) developed neurological disease and succumbed to ZIKV infection, whereas single Irf3 −/− , IRF5 −/− , and Mavs −/− knockout mice exhibited no overt illness. Ifnar1 −/− mice sustained high viral loads in the brain and spinal cord, consistent with evidence that ZIKV causes neurodevelopmental defects in human fetuses. The testes of Ifnar1 −/− mice had the highest viral loads, which is relevant to sexual transmission of ZIKV. This model of ZIKV pathogenesis will be valuable for evaluating vaccines and therapeutics as well as understanding disease pathogenesis.

  • Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System
    Journal of Virology, 2015
    Co-Authors: José Luiz Proença-módena, Amelia K Pinto, Justin M Richner, Tiffany M Lucas, Jennifer L Hyde, Renata Sesti-costa, Matthew J. Gorman, Helen M Lazear, Michael S. Diamond
    Abstract:

    Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, IRF5, and Irf7 or in IRF5 alone. Deletion of Irf3, IRF5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of IRF5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected IRF5−/− mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in IRF5−/− mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3−/− Irf7−/− (DKO) mice infected with OROV was not as rapid or complete as observed in Ifnar−/− mice, indicating that other transcriptional factors associated with an IFN response contribute to antiviral immunity against OROV. Here, we evaluated bunyavirus replication, tissue tropism, and cytokine production in primary cells and mice lacking IRF-5. We demonstrate an important role for IRF-5 in preventing neuroinvasion and the ensuing encephalitis caused by OROV and LACV.

  • Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection.
    Journal of Virology, 2014
    Co-Authors: Larissa B. Thackray, Amelia K Pinto, Justin M Richner, Helen M Lazear, Bimmi Shrestha, Jonathan J. Miner, Michael Gale, Michael S. Diamond
    Abstract:

    ABSTRACT Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 ( Dock2 mu/mu ) in several IRF5 −/− mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo , we infected backcrossed IRF5 −/− × Dock2 wt/wt mice (here called IRF5 −/− mice) and independently generated CMV-Cre IRF5 fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, IRF5 −/− and CMV-Cre IRF5 fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in IRF5 −/− mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with IRF5 −/− mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. IMPORTANCE Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in IRF5 −/− mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of IRF5 −/− mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection.

Shunbin Ning - One of the best experts on this subject based on the ideXlab platform.

  • interferon regulatory factor 5 represses expression of the epstein barr virus oncoprotein lmp1 braking of the irf7 lmp1 regulatory circuit
    Journal of Virology, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    We have reported evidence for a positive regulatory circuit between interferon regulatory factor 7 (IRF7) and the Epstein-Barr virus (EBV) oncoprotein 1 (LMP1) (S. Ning, A. M. Hahn, and J. S. Pagano, J. Virol. 77:9359-9368, 2003). To explore a possible braking mechanism for this circuit, several type II EBV-infected cell lines that express different levels of LMP1 and IRF7 proteins and therefore are convenient for studying modulation of expression of LMP1 were analyzed. Endogenous levels of IRF7 and LMP1 were directly correlated. Transient expression of an IRF7 dominant-negative mutant decreased LMP1 levels. Endogenous IRF5 and IRF7 proteins were shown to physically associate in EBV-positive cells. Transient expression of IRF5 decreased activation of the LMP1 promoter by IRF7 in a dose-dependent manner. Finally, transfection of either an IRF5 dominant-negative construct or IRF5 small interfering RNA in these cells resulted in increases in endogenous levels of LMP1. These results indicate that IRF5 can downregulate IRF7's induction of expression of LMP1 most likely by interacting with IRF7 and provide a means of modulating a regulatory circuit between IRF7 and LMP1.

  • Interferon Regulatory Factor 5 Represses Expression of the Epstein-Barr Virus Oncoprotein LMP1: Braking of the IRF7/LMP1 Regulatory Circuit
    Journal of Virology, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    We have reported evidence for a positive regulatory circuit between interferon regulatory factor 7 (IRF7) and the Epstein-Barr virus (EBV) oncoprotein 1 (LMP1) (S. Ning, A. M. Hahn, and J. S. Pagano, J. Virol. 77:9359-9368, 2003). To explore a possible braking mechanism for this circuit, several type II EBV-infected cell lines that express different levels of LMP1 and IRF7 proteins and therefore are convenient for studying modulation of expression of LMP1 were analyzed. Endogenous levels of IRF7 and LMP1 were directly correlated. Transient expression of an IRF7 dominant-negative mutant decreased LMP1 levels. Endogenous IRF5 and IRF7 proteins were shown to physically associate in EBV-positive cells. Transient expression of IRF5 decreased activation of the LMP1 promoter by IRF7 in a dose-dependent manner. Finally, transfection of either an IRF5 dominant-negative construct or IRF5 small interfering RNA in these cells resulted in increases in endogenous levels of LMP1. These results indicate that IRF5 can downregulate IRF7's induction of expression of LMP1 most likely by interacting with IRF7 and provide a means of modulating a regulatory circuit between IRF7 and LMP1.

  • Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling.
    Journal of Biological Chemistry, 2005
    Co-Authors: Shunbin Ning, Leslie E. Huye, Joseph S. Pagano
    Abstract:

    Abstract Genes containing an interferon (IFN)-stimulated response element (ISRE) can be divided into two groups according to their inducibility by IFN and virus infection: one induced only by IFN and the other induced by both IFN and virus infection. Although it is now clear that IFN regulatory factor 7 (IRF7) is a multifunctional gene essential for induction of type I IFNs, regulation of the IRF7 promoter (IRF7p) is poorly understood. The IRF7 gene includes two IFN responsive elements, an IRF-binding element (IRFE) in the promoter region and an ISRE in the first intron, and is induced by the IFN-triggered Jak-STAT pathway by binding of the IFN-stimulated gene factor 3 (ISGF3) complex to the ISRE. In this study, we demonstrate that IRF3 and IRF7, which with the coactivators CREB-binding protein and P300 form the virus-activated factor (VAF) complex upon Sendai virus infection, bind to the IRF7 ISRE and IRFE and can directly activate IRF7 transcription. Promoter reporter assays show that both the ISRE and IRFE are responsive to activation by IRF7 and IRF3. In cells transiently expressing IRF7 or/and IRF3, the VAF level and binding of VAF are clearly increased after Sendai virus infection. Studies with Jak1 kinase inactive 293 cells that were stably transfected with a Jak1 kinase dead dominant negative construct, and the mutant cell lines SAN (IFNα–/β–), U2A (IRF9–), U4A (Jak1–), and DKO (IRF1–/IRF2–) show that the IRF7 transcription activated directly by VAF is distinct from and independent of the IFN signaling pathway. Thus, IRF7 transcription is autoregulated by binding of the IRF7-containing VAF to its own ISRE and IRFE. The results show two distinct mechanisms for the activation of the IRF7 promoter, by IFN and by virus infection. A regulatory network between type I IFNs and IRF7 is proposed. The distinct pathways may reflect special roles for an efficient antiviral response at different stages of virus infection.

Michael Gale - One of the best experts on this subject based on the ideXlab platform.

  • IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection.
    Journal of leukocyte biology, 2018
    Co-Authors: Kwan T Chow, Megan Knoll, Yuehming Loo, Connor Driscoll, Michael Gale
    Abstract:

    Pathogen recognition receptor (PRR) signaling is critical for triggering innate immune activation and the expression immune response genes, including genes that impart restriction against virus replication. RIG-I-like receptors and Toll-like receptors are PRRs that signal immune activation and drive the expression of antiviral genes and the production of type I interferon (IFN) leading to induction of IFN-stimulated genes, in part through the Interferon Regulatory Factor (IRF) family of transcription factors. Previous studies with West Nile virus (WNV) showed that IRF3 and IRF7 regulate IFN expression in fibroblasts and neurons, whereas macrophages and dendritic cells (DCs) retained the ability to induce IFNβ in the absence of IRF3 and IRF7 in a manner implicating IRF5 in PRR signaling actions. Here we assessed the contribution of IRF5 to immune gene induction in response to WNV infection in DCs. We examined IRF5-dependent gene expression and found that loss of IRF5 in mice resulted in modest and subtle changes in the expression of WNV-regulated genes. Anti-IRF5 chromatin immunoprecipitation with next-generation sequencing of genomic DNA coupled with mRNA analysis revealed unique IRF5 binding motifs within the mouse genome that are distinct from the canonical IRF binding motif and that link with IRF5-target gene expression. Using integrative bioinformatics analyses, we identified new IRF5 primary target genes in DCs in response to virus infection. This study provides novel insights into the distinct and unique innate immune and immune gene regulatory program directed by IRF5.

  • differential and overlapping immune programs regulated by irf3 and IRF5 in plasmacytoid dendritic cells
    Journal of Immunology, 2018
    Co-Authors: Kwan T Chow, Courtney Wilkins, Miwako Narita, Richard Green, Megan Knoll, Yuehming Loo, Michael Gale
    Abstract:

    We examined the signaling pathways and cell type-specific responses of IFN regulatory factor (IRF) 5, an immune-regulatory transcription factor. We show that the protein kinases IKKα, IKKβ, IKKe, and TANK-binding kinase 1 each confer IRF5 phosphorylation/dimerization, thus extending the family of IRF5 activator kinases. Among primary human immune cell subsets, we found that IRF5 is most abundant in plasmacytoid dendritic cells (pDCs). Flow cytometric cell imaging revealed that IRF5 is specifically activated by endosomal TLR signaling. Comparative analyses revealed that IRF3 is activated in pDCs uniquely through RIG-I-like receptor (RLR) signaling. Transcriptomic analyses of pDCs show that the partitioning of TLR7/IRF5 and RLR/IRF3 pathways confers differential gene expression and immune cytokine production in pDCs, linking IRF5 with immune regulatory and proinflammatory gene expression. Thus, TLR7/IRF5 and RLR-IRF3 partitioning serves to polarize pDC response outcome. Strategies to differentially engage IRF signaling pathways should be considered in the design of immunotherapeutic approaches to modulate or polarize the immune response for specific outcome.

  • Interferon regulatory factor 5-dependent immune responses in the draining lymph node protect against West Nile virus infection.
    Journal of Virology, 2014
    Co-Authors: Larissa B. Thackray, Amelia K Pinto, Justin M Richner, Helen M Lazear, Bimmi Shrestha, Jonathan J. Miner, Michael Gale, Michael S. Diamond
    Abstract:

    ABSTRACT Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 ( Dock2 mu/mu ) in several IRF5 −/− mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo , we infected backcrossed IRF5 −/− × Dock2 wt/wt mice (here called IRF5 −/− mice) and independently generated CMV-Cre IRF5 fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, IRF5 −/− and CMV-Cre IRF5 fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in IRF5 −/− mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with IRF5 −/− mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. IMPORTANCE Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in IRF5 −/− mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of IRF5 −/− mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection.

John T. Patton - One of the best experts on this subject based on the ideXlab platform.

  • rotavirus nsp1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain
    Journal of Virology, 2013
    Co-Authors: Michelle M Arnold, Mario Barro, John T. Patton
    Abstract:

    Rotavirus nonstructural protein NSP1 can inhibit expression of interferon (IFN) and IFN-stimulated gene products by inducing proteasome-mediated degradation of IFN-regulatory factors (IRFs), including IRF3, IRF5, and IRF7. All IRF proteins share an N-terminal DNA-binding domain (DBD), and IRF3, IRF5, and IRF7 contain a similar C-proximal IRF association domain (IAD) that mediates IRF dimerization. An autoinhibitory domain (ID) at the extreme C terminus interacts with the IAD, burying residues necessary for IRF dimerization. Phosphorylation of serine/threonine residues in the ID induces charge repulsions that unmask the IAD, enabling IRF dimerization and subsequent nuclear translocation. To define the region of IRF proteins targeted for degradation by NSP1, we generated IRF3 and IRF7 truncation mutants and transiently expressed each with simian SA11-4F NSP1. These assays indicated that the IAD represented a necessary and sufficient target for degradation. Because NSP1 did not mediate degradation of truncated forms of the IAD, NSP1 likely requires a structurally intact IAD for recognition and targeting of IRF proteins. IRF9, which contains an IAD-like region that directs interactions with signal inducer and activator of transcription (STAT) proteins, was also targeted for degradation by NSP1, while IRF1, which lacks an IAD, was not. Analysis of mutant forms of IRF3 unable to undergo dimerization or that were constitutively dimeric showed that both were targeted for degradation by NSP1. These results indicate that SA11-4F NSP1 can induce degradation of inactive and activated forms of IAD-containing IRF proteins (IRF3 to IRF9), allowing a multipronged attack on IFN-based pathways that promote antiviral innate and adaptive immune responses.

  • Rotavirus NSP1 Inhibits Expression of Type I Interferon by Antagonizing the Function of Interferon Regulatory Factors IRF3, IRF5, and IRF7
    Journal of Virology, 2007
    Co-Authors: Mario Barro, John T. Patton
    Abstract:

    Secretion of interferon (IFN) by virus-infected cells is essential for activating autocrine and paracrine pathways that promote cellular transition to an antiviral state. In most mammalian cells, IFN production is initiated by the activation of constitutively expressed IFN regulatory factor 3, IRF3, which in turn leads to the induction of IRF7, the “master regulator” of IFN type I synthesis (alpha/beta IFN). Previous studies established that rotavirus NSP1 antagonizes IFN signaling by inducing IRF3 degradation. In the present study, we have determined that, in comparison to wild-type rotaviruses, rotaviruses encoding defective NSP1 grow to lower titers in some cell lines and that this poor growth phenotype is due to their failure to suppress IFN expression. Furthermore, we provide evidence that rotaviruses encoding wild-type NSP1 subvert IFN signaling by inducing the degradation of not only IRF3, but also IRF7, with both events occurring through proteasome-dependent processes that proceed with similar efficiencies. The capacity of NSP1 to induce IRF7 degradation may allow rotavirus to move across the gut barrier by enabling the virus to replicate in specialized trafficking cells (dendritic cells and macrophages) that constitutively express IRF7. Along with IRF3 and IRF7, NSP1 was found to induce the degradation of IRF5, a factor that upregulates IFN expression and that is involved in triggering apoptosis during viral infection. Our analysis suggests that NSP1 mediates the degradation of IRF3, IRF5, and IRF7 by recognizing a common element of IRF proteins, thereby allowing NSP1 to act as a broad-spectrum antagonist of IRF function.