Iridoviridae

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 1386 Experts worldwide ranked by ideXlab platform

Mengmeng Chen - One of the best experts on this subject based on the ideXlab platform.

  • complete genome sequence of shrimp hemocyte iridescent virus shiv isolated from white leg shrimp litopenaeus vannamei
    Archives of Virology, 2018
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Xuan Dong, Bing Yang, Jianhai Xiang
    Abstract:

    Infection with shrimp hemocyte iridescent virus (SHIV), a new virus of the family Iridoviridae isolated in China, results in a high mortality rate in white leg shrimp (Litopenaeus vannamei). The complete genome sequence of SHIV was determined and analyzed in this study. The genomic DNA was 165,809 bp long with 34.6% G+C content and 170 open reading frames (ORFs). Dotplot analysis showed that the longest repetitive region was 320 bp in length, including 11 repetitions of an 18-bp sequence and 3.1 repetitions of a 39-bp sequence. Two phylogenetic trees were constructed based on 27 or 16 concatenated sequences of proteins encoded by genes that are conserved between SHIV homologous and other iridescent viruses. The results of this study, suggest that SHIV should be considered a member of the proposed new genus “Xiairidovirus”.

  • characterization of a new member of Iridoviridae shrimp hemocyte iridescent virus shiv found in white leg shrimp litopenaeus vannamei
    Scientific Reports, 2017
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Dongyuan Cheng, Xuan Dong
    Abstract:

    A newly discovered iridescent virus that causes severe disease and high mortality in farmed Litopenaeus vannamei in Zhejiang, China, has been verified and temporarily specified as shrimp hemocyte iridescent virus (SHIV). Histopathological examination revealed basophilic inclusions and pyknosis in hematopoietic tissue and hemocytes in gills, hepatopancreas, periopods and muscle. Using viral metagenomics sequencing, we obtained partial sequences annotated as potential Iridoviridae. Phylogenetic analyses using amino acid sequences of major capsid protein (MCP) and ATPase revealed that it is a new iridescent virus but does not belong to the five known genera of Iridoviridae. Transmission electron microscopy showed that the virus exhibited a typical icosahedral structure with a mean diameter of 158.6 ± 12.5 nm (n = 30)(v-v) and 143.6 ± 10.8 nm (n = 30)(f-f), and an 85.8 ± 6.0 nm (n = 30) nucleoid. Challenge tests of L. vannamei via intermuscular injection, per os and reverse gavage all exhibited 100% cumulative mortality rates. The in situ hybridization showed that hemopoietic tissue, gills, and hepatopancreatic sinus were the positively reacting tissues. Additionally, a specific nested PCR assay was developed. PCR results revealed that L. vannamei, Fenneropenaeus chinensis, and Macrobrachium rosenbergii were SHIV-positive, indicating a new threat existing in the shrimp farming industry in China.

Qingli Zhang - One of the best experts on this subject based on the ideXlab platform.

  • complete genome sequence of shrimp hemocyte iridescent virus shiv isolated from white leg shrimp litopenaeus vannamei
    Archives of Virology, 2018
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Xuan Dong, Bing Yang, Jianhai Xiang
    Abstract:

    Infection with shrimp hemocyte iridescent virus (SHIV), a new virus of the family Iridoviridae isolated in China, results in a high mortality rate in white leg shrimp (Litopenaeus vannamei). The complete genome sequence of SHIV was determined and analyzed in this study. The genomic DNA was 165,809 bp long with 34.6% G+C content and 170 open reading frames (ORFs). Dotplot analysis showed that the longest repetitive region was 320 bp in length, including 11 repetitions of an 18-bp sequence and 3.1 repetitions of a 39-bp sequence. Two phylogenetic trees were constructed based on 27 or 16 concatenated sequences of proteins encoded by genes that are conserved between SHIV homologous and other iridescent viruses. The results of this study, suggest that SHIV should be considered a member of the proposed new genus “Xiairidovirus”.

  • characterization of a new member of Iridoviridae shrimp hemocyte iridescent virus shiv found in white leg shrimp litopenaeus vannamei
    Scientific Reports, 2017
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Dongyuan Cheng, Xuan Dong
    Abstract:

    A newly discovered iridescent virus that causes severe disease and high mortality in farmed Litopenaeus vannamei in Zhejiang, China, has been verified and temporarily specified as shrimp hemocyte iridescent virus (SHIV). Histopathological examination revealed basophilic inclusions and pyknosis in hematopoietic tissue and hemocytes in gills, hepatopancreas, periopods and muscle. Using viral metagenomics sequencing, we obtained partial sequences annotated as potential Iridoviridae. Phylogenetic analyses using amino acid sequences of major capsid protein (MCP) and ATPase revealed that it is a new iridescent virus but does not belong to the five known genera of Iridoviridae. Transmission electron microscopy showed that the virus exhibited a typical icosahedral structure with a mean diameter of 158.6 ± 12.5 nm (n = 30)(v-v) and 143.6 ± 10.8 nm (n = 30)(f-f), and an 85.8 ± 6.0 nm (n = 30) nucleoid. Challenge tests of L. vannamei via intermuscular injection, per os and reverse gavage all exhibited 100% cumulative mortality rates. The in situ hybridization showed that hemopoietic tissue, gills, and hepatopancreatic sinus were the positively reacting tissues. Additionally, a specific nested PCR assay was developed. PCR results revealed that L. vannamei, Fenneropenaeus chinensis, and Macrobrachium rosenbergii were SHIV-positive, indicating a new threat existing in the shrimp farming industry in China.

Ruoyu Wang - One of the best experts on this subject based on the ideXlab platform.

  • complete genome sequence of shrimp hemocyte iridescent virus shiv isolated from white leg shrimp litopenaeus vannamei
    Archives of Virology, 2018
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Xuan Dong, Bing Yang, Jianhai Xiang
    Abstract:

    Infection with shrimp hemocyte iridescent virus (SHIV), a new virus of the family Iridoviridae isolated in China, results in a high mortality rate in white leg shrimp (Litopenaeus vannamei). The complete genome sequence of SHIV was determined and analyzed in this study. The genomic DNA was 165,809 bp long with 34.6% G+C content and 170 open reading frames (ORFs). Dotplot analysis showed that the longest repetitive region was 320 bp in length, including 11 repetitions of an 18-bp sequence and 3.1 repetitions of a 39-bp sequence. Two phylogenetic trees were constructed based on 27 or 16 concatenated sequences of proteins encoded by genes that are conserved between SHIV homologous and other iridescent viruses. The results of this study, suggest that SHIV should be considered a member of the proposed new genus “Xiairidovirus”.

  • characterization of a new member of Iridoviridae shrimp hemocyte iridescent virus shiv found in white leg shrimp litopenaeus vannamei
    Scientific Reports, 2017
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Dongyuan Cheng, Xuan Dong
    Abstract:

    A newly discovered iridescent virus that causes severe disease and high mortality in farmed Litopenaeus vannamei in Zhejiang, China, has been verified and temporarily specified as shrimp hemocyte iridescent virus (SHIV). Histopathological examination revealed basophilic inclusions and pyknosis in hematopoietic tissue and hemocytes in gills, hepatopancreas, periopods and muscle. Using viral metagenomics sequencing, we obtained partial sequences annotated as potential Iridoviridae. Phylogenetic analyses using amino acid sequences of major capsid protein (MCP) and ATPase revealed that it is a new iridescent virus but does not belong to the five known genera of Iridoviridae. Transmission electron microscopy showed that the virus exhibited a typical icosahedral structure with a mean diameter of 158.6 ± 12.5 nm (n = 30)(v-v) and 143.6 ± 10.8 nm (n = 30)(f-f), and an 85.8 ± 6.0 nm (n = 30) nucleoid. Challenge tests of L. vannamei via intermuscular injection, per os and reverse gavage all exhibited 100% cumulative mortality rates. The in situ hybridization showed that hemopoietic tissue, gills, and hepatopancreatic sinus were the positively reacting tissues. Additionally, a specific nested PCR assay was developed. PCR results revealed that L. vannamei, Fenneropenaeus chinensis, and Macrobrachium rosenbergii were SHIV-positive, indicating a new threat existing in the shrimp farming industry in China.

Xuan Dong - One of the best experts on this subject based on the ideXlab platform.

  • complete genome sequence of shrimp hemocyte iridescent virus shiv isolated from white leg shrimp litopenaeus vannamei
    Archives of Virology, 2018
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Xuan Dong, Bing Yang, Jianhai Xiang
    Abstract:

    Infection with shrimp hemocyte iridescent virus (SHIV), a new virus of the family Iridoviridae isolated in China, results in a high mortality rate in white leg shrimp (Litopenaeus vannamei). The complete genome sequence of SHIV was determined and analyzed in this study. The genomic DNA was 165,809 bp long with 34.6% G+C content and 170 open reading frames (ORFs). Dotplot analysis showed that the longest repetitive region was 320 bp in length, including 11 repetitions of an 18-bp sequence and 3.1 repetitions of a 39-bp sequence. Two phylogenetic trees were constructed based on 27 or 16 concatenated sequences of proteins encoded by genes that are conserved between SHIV homologous and other iridescent viruses. The results of this study, suggest that SHIV should be considered a member of the proposed new genus “Xiairidovirus”.

  • characterization of a new member of Iridoviridae shrimp hemocyte iridescent virus shiv found in white leg shrimp litopenaeus vannamei
    Scientific Reports, 2017
    Co-Authors: Mengmeng Chen, Chen Li, Qingli Zhang, Ruoyu Wang, Dongyuan Cheng, Xuan Dong
    Abstract:

    A newly discovered iridescent virus that causes severe disease and high mortality in farmed Litopenaeus vannamei in Zhejiang, China, has been verified and temporarily specified as shrimp hemocyte iridescent virus (SHIV). Histopathological examination revealed basophilic inclusions and pyknosis in hematopoietic tissue and hemocytes in gills, hepatopancreas, periopods and muscle. Using viral metagenomics sequencing, we obtained partial sequences annotated as potential Iridoviridae. Phylogenetic analyses using amino acid sequences of major capsid protein (MCP) and ATPase revealed that it is a new iridescent virus but does not belong to the five known genera of Iridoviridae. Transmission electron microscopy showed that the virus exhibited a typical icosahedral structure with a mean diameter of 158.6 ± 12.5 nm (n = 30)(v-v) and 143.6 ± 10.8 nm (n = 30)(f-f), and an 85.8 ± 6.0 nm (n = 30) nucleoid. Challenge tests of L. vannamei via intermuscular injection, per os and reverse gavage all exhibited 100% cumulative mortality rates. The in situ hybridization showed that hemopoietic tissue, gills, and hepatopancreatic sinus were the positively reacting tissues. Additionally, a specific nested PCR assay was developed. PCR results revealed that L. vannamei, Fenneropenaeus chinensis, and Macrobrachium rosenbergii were SHIV-positive, indicating a new threat existing in the shrimp farming industry in China.

Yves Le Bigot - One of the best experts on this subject based on the ideXlab platform.

  • Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales.
    Molecular phylogenetics and evolution, 2015
    Co-Authors: Benoit Piegu, Brian A. Federici, Dennis K Bideshi, Sassan Asgari, Yves Le Bigot
    Abstract:

    The family Iridoviridae of the superfamily Megavirales currently consists of five genera. Three of these, Lymphocystivirus, Megalocytivirus and Ranavirus, are composed of species that infect vertebrates, and the other two, Chloriridovirus and Iridovirus, contain species that infect invertebrates. Until recently, the lack of genomic sequence data limited investigation of the evolutionary relationships between the invertebrate iridoviruses (IIVs) and vertebrate iridoviruses (VIVs), as well as the relationship of these viruses to those of the closely related family Ascoviridae, which only contains species that infect insects. To help clarify the phylogenetic relationships of these viruses, we recently published the annotated genome sequences of five additional IIV isolates. Here, using classical approaches of phylogeny via maximum likelihood, a Bayesian approach, and resolution of a core protein tree, we demonstrate that the invertebrate and vertebrate IV species constitute two lineages that diverged early during the evolution of the family Iridoviridae, before the emergence of the four IIV clades, previously referred to as Chloriridoviruses, Polyiridoviruses, Oligoiridoviruses and Crustaceoiridoviruses. In addition, we provide evidence that species of the family Ascoviridae have a more recent origin than most iridoviruses, emerging just before the differentiation between the Oligoiridoviruses and Crustaceoiridovirus clades. Our results also suggest that after emergence, based on their molecular clock, the ascoviruses evolved more quickly than their closest iridovirus relatives.

  • Genome sequence of a crustacean iridovirus, IIV31, isolated from the pill bug, Armadillidium vulgare.
    Journal of General Virology, 2014
    Co-Authors: Benoit Piegu, Sebastien Guizard, Brian A. Federici, Corinne Cruaud, Dennis K Bideshi, Sassan Asgari, Tan Yeping, Yves Le Bigot
    Abstract:

    Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.

  • complete genome sequence of invertebrate iridovirus iiv30 isolated from the corn earworm helicoverpa zea
    Journal of Invertebrate Pathology, 2014
    Co-Authors: Benoit Piegu, Sebastien Guizard, Tatsinda Spears, Arnault Couloux, Brian A. Federici, Corinne Cruaud, Dennis K Bideshi, Yves Le Bigot
    Abstract:

    Abstract Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 30 (IIV30) was originally isolated from a larva of the corn earworm, Helicoverpa zea (order lepidoptera, Family Noctuidae) in western Australia. The IIV30 virions are icosahedral, have a diameter of about 130 nm, and contain a dsDNA genome of 198.5 kbp with 28.11% in GC content and 177 coding sequences. Here we describe its complete genome sequence and annotate the genes for which we could assign a putative function. This is the sixth genome sequence of an invertebrate iridovirus reported.

  • Genome sequence of a crustacean iridovirus, IIV31, isolated from the pill bug, [i]Armadillidium vulgare[/i]
    Journal of General Virology, 2014
    Co-Authors: Benoit Piegu, Sebastien Guizard, Brian A. Federici, Corinne Cruaud, Dennis K Bideshi, Sassan Asgari, Tan Yeping, Yves Le Bigot
    Abstract:

    Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.

  • Complete genome sequence of invertebrate iridovirus IIV-25 isolated from a blackfly larva.
    Archives of virology, 2013
    Co-Authors: Benoit Piegu, Sebastien Guizard, Tatsinda Spears, Arnault Couloux, Brian A. Federici, Corinne Cruaud, Dennis K Bideshi, Yves Le Bigot
    Abstract:

    Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridovirus 25 (IIV-25) was originally isolated from the larva of a blackfly (Simulium spp., order Diptera) found in the Ystwyth river near Aberystwyth, Wales. IIV-25 virions are icosahedral, have a diameter of ~130 nm, and contain a dsDNA genome of 204.8 kbp, with a G+C content of 30.32 %, that codes for 177 proteins. Here, we describe the complete genome sequence of this virus and its annotation. This is the fifth genome sequence of an invertebrate iridovirus reported.