Proteins

14,000,000 Leading Edge Experts on the ideXlab platform

Scan Science and Technology

Contact Leading Edge Experts & Companies

Scan Science and Technology

Contact Leading Edge Experts & Companies

The Experts below are selected from a list of 309 Experts worldwide ranked by ideXlab platform

Jose Arrojo Fernandez - One of the best experts on this subject based on the ideXlab platform.

  • identificacion y estudio de las interacciones virus celula del vesivirus de conejo rav
    2015
    Co-Authors: Jose Arrojo Fernandez
    Abstract:

    Los calivirus son virus RNA de cadena sencilla y polaridad positiva que actuan como agentes patogenos en animales y humanos. El rango de huesped y el tropismo celular, asi como el desarrollo de la infeccion, dependen en gran medida de la interaccion con proteinas del huesped. En la presente memoria de tesis doctoral se describen las estrategias desarrolladas para la identificacion de proteinas celulares que interaccionan con secuencias proximas a los extremos 5? y 3? del genoma del RaV y con las proteinas virales NS5, NS6/7 y VP1 del mismo virus. Para el estudio de las interacciones RNA viral-proteina celular se desarrollo una cromatografia de afinidad a RNA biotinilado utilizando extractos citoplasmaticos de celulas susceptibles y permisivas a la infeccion por RaV, que fueron incubados con RNAs sinteticos que presentaban secuencias de los extremos del genoma del virus. Las proteinas purificadas se analizaron e identificaron por espectrometria de masas. En total se consiguieron identificar 28 proteinas que presentaban diferente afinidad por secuencias del extremo 3? o 5?. Para la identificacion de las interacciones proteina viral-proteina celular se generaron lineas celulares modificadas establemente que expresaran, de manera independiente, las proteinas virales NS5, NS6/7 y VP1 de forma inducible y fusionadas a una etiqueta peptidica (C-TAP) para la purificacion por afinidad en tandem (TAP). Se purificaron proteinas celulares unidas a NS5 y VP1, que fueron analizadas e identificadas por espectrometria de masas. En conjunto se identificaron 5 proteinas celulares capaces de interaccionar con VP1 y 3 con NS5. Al ser el RaV uno de los pocos modelos de calicivirus que puede ser propagado en cultivos celulares, se pudo estudiar la funcion de las proteinas PABP y hnRNPK en la infeccion. La proteina PABP, identificada por su interaccion con secuencias proximas al extremo 3? del genoma del RaV, fue silenciada en cultivos celulares y la posterior infeccion dio lugar a un descenso en el titulo viral, lo que indica un papel relevante de esta proteina celular en la propagacion del virus. La proteina hnRNPK se identifico por su interaccion con secuencias de la region 5? del genoma del RaV, y el silenciamiento de su expresion causo un aumento del titulo viral, sugiriendo que esta proteina juega un papel negativo en la propagacion del RaV. Con los resultados obtenidos en esta tesis doctoral se abren nuevas vias para el estudio de los procesos moleculares de replicacion de RNA, traduccion y formacion de nuevas particulas virales en la infeccion por calicivirus, asi como para el desarrollo de estrategias antivirales basadas en la accion de proteinas celulares durante la infeccion.

  • identificacion y estudio de las interacciones virus celula del vesivirus de conejo rav
    2015
    Co-Authors: Jose Arrojo Fernandez
    Abstract:

    Los calivirus son virus RNA de cadena sencilla y polaridad positiva que actuan como agentes patogenos en animales y humanos. El rango de huesped y el tropismo celular, asi como el desarrollo de la infeccion, dependen en gran medida de la interaccion con proteinas del huesped. En la presente memoria de tesis doctoral se describen las estrategias desarrolladas para la identificacion de proteinas celulares que interaccionan con secuencias proximas a los extremos 5? y 3? del genoma del RaV y con las proteinas virales NS5, NS6/7 y VP1 del mismo virus. Para el estudio de las interacciones RNA viral-proteina celular se desarrollo una cromatografia de afinidad a RNA biotinilado utilizando extractos citoplasmaticos de celulas susceptibles y permisivas a la infeccion por RaV, que fueron incubados con RNAs sinteticos que presentaban secuencias de los extremos del genoma del virus. Las proteinas purificadas se analizaron e identificaron por espectrometria de masas. En total se consiguieron identificar 28 proteinas que presentaban diferente afinidad por secuencias del extremo 3? o 5?. Para la identificacion de las interacciones proteina viral-proteina celular se generaron lineas celulares modificadas establemente que expresaran, de manera independiente, las proteinas virales NS5, NS6/7 y VP1 de forma inducible y fusionadas a una etiqueta peptidica (C-TAP) para la purificacion por afinidad en tandem (TAP). Se purificaron proteinas celulares unidas a NS5 y VP1, que fueron analizadas e identificadas por espectrometria de masas. En conjunto se identificaron 5 proteinas celulares capaces de interaccionar con VP1 y 3 con NS5. Al ser el RaV uno de los pocos modelos de calicivirus que puede ser propagado en cultivos celulares, se pudo estudiar la funcion de las proteinas PABP y hnRNPK en la infeccion. La proteina PABP, identificada por su interaccion con secuencias proximas al extremo 3? del genoma del RaV, fue silenciada en cultivos celulares y la posterior infeccion dio lugar a un descenso en el titulo viral, lo que indica un papel relevante de esta proteina celular en la propagacion del virus. La proteina hnRNPK se identifico por su interaccion con secuencias de la region 5? del genoma del RaV, y el silenciamiento de su expresion causo un aumento del titulo viral, sugiriendo que esta proteina juega un papel negativo en la propagacion del RaV. Con los resultados obtenidos en esta tesis doctoral se abren nuevas vias para el estudio de los procesos moleculares de replicacion de RNA, traduccion y formacion de nuevas particulas virales en la infeccion por calicivirus, asi como para el desarrollo de estrategias antivirales basadas en la accion de proteinas celulares durante la infeccion.

Enrique Querol - One of the best experts on this subject based on the ideXlab platform.

  • do protein protein interaction databases identify moonlighting Proteins
    Molecular BioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

  • Do protein–protein interaction databases identify moonlighting Proteins?
    Molecular bioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

Antonio Castillo Gómez - One of the best experts on this subject based on the ideXlab platform.

  • do protein protein interaction databases identify moonlighting Proteins
    Molecular BioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

  • Do protein–protein interaction databases identify moonlighting Proteins?
    Molecular bioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

Sergio Hernández - One of the best experts on this subject based on the ideXlab platform.

  • do protein protein interaction databases identify moonlighting Proteins
    Molecular BioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

  • Do protein–protein interaction databases identify moonlighting Proteins?
    Molecular bioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

Juan Cedano - One of the best experts on this subject based on the ideXlab platform.

  • do protein protein interaction databases identify moonlighting Proteins
    Molecular BioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.

  • Do protein–protein interaction databases identify moonlighting Proteins?
    Molecular bioSystems, 2011
    Co-Authors: Antonio Castillo Gómez, Sergio Hernández, Isaac Amela, Jaume Piñol, Juan Cedano, Enrique Querol
    Abstract:

    One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or “moonlighting”, Proteins. By and large, moonlighting Proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among Proteins and pathways. In principle, protein–protein interaction (PPI) databases should contain information on moonlighting Proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting Proteins. In the present work we check whether well-established moonlighting Proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.